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Abstract
A numerical method for solving structural dynamic response was proposed by combining the
theory of radial basis functions (RBFs) approximation and the collocation point methods. To
solve the problem that using basic RBFs point interpolation method will bring great numerical
oscillations, a multivariate interpolation function with the linear combination of each order
differential terms was developed and the arithmetic steps were given. Unlike other numerical
methods, there were no theoretical supposes about changing rules of acceleration and load
within time interval, so this method had an applicability to solve jerk and jerk (third-order)
equations. Actual examples showed that RBFs approximation method had simple
computational process and improved the convergency and stability effectively.
Keywords: Radial Basis Functions; Meshless Methods; Dynamic Response; Jerk; Jerk
Equations; Initial Value Problems

Introduction
Problems of dynamic response of systems can often be come down to initial problems of
second-order ordinary differential equations. At present the methods for structural dynamic
response mainly include: mode superposition methods, direct integration methods and
methods turning second-order into first [1], et al. Mode superposition methods are only used
for integration methods of linear systems adopted only first several-order modes, so it is
inapplicable to systems which the effects of high modes can't be neglected. Direct integration
methods are appropriate for both linear systems and nonlinear systems, the most commonly
used includes difference methods, linear acceleration methods and improved linear
acceleration methods. Above Methods are all based on two following assumptions: (1)
Continues time scale is divided into finite number of nodes where the motion differential
equation is just satisfied and solutions of displacement, velocity and acceleration just are
obtained; (2) There are some simple assumptions about change rules of acceleration or loads
in time interval.

Theoretical defects of these methods made a lower precision with only first or second-order,
and the calculating precision will poorer if actual acceleration belied these assumption in
transient response phase. Furthermore, the uncontrollability of inherent algorithmic damping
of direct integration method also causes great calculation errors. Because applicability of
integrate methods depends on type of nonlinearity and load characteristics, etc, it can be hard
to choose an appropriate differential scheme while solving a nonlinear problem. Precise
integration methods [2] open up a new direction for solving dynamic responses, but when
solving homogeneous equations under random loads, such as seismic waves and wind loads,
it is necessary to make some assumption about change rules of loads in time interval.

Moreover, Jerk [3], the time rate-of-change of acceleration, has been increasingly applied in
areas of chaos theory [4][5], nonlinear dynamics [6][7], mechanical design [8], and structural
damage detection [9], etc. And jerk equation, third-order differential equation, of the form
involving the third temporal derivative of displacement can describe some physical problems
such as third-order mechanical oscillations [10][11]. Above methods are no longer able to be



used to solve jerk and jerk equation because of their inherent basic assumption. At present a
few effective numerical methods can be used, e.g., fourth-order accurate Runge-Kutta method
with sufficient-small step-sizes [12]. With deeper research about the role of jerk in mechanics
and applications, jerk calculating will have more important implications.

Radial basis functions (RBFs) have advantages of simple form, isotropic and independent of
space dimensions, etc. scholars, at home and aboard, have proposed a sea of methods based
on radial basis functions which have been widely applied in scientific and engineering
calculating areas of hydrodynamics, computational mechanics, picture processing, etc.
Methless methods [13][14] based on RBFs have been used to solve boundary value problems,
and it has acquired a great of achievements, but RBFs have not yet been used to solve initial
problems up to now and we will try to do it.

1 Radial Basis Function Approximation Methods

Radial Basis Function (RBF) is a kind of basis function with a distance variable. It uses the
simple function φ defined in [0, +∞) and Euclidean norm ||·||2 in Rd to represent d-dimensional
function φ=φ(Ri), in which Ri =||x-xi||2, the distance from arbitrary point x to the point xi, is
independent variable. In essence,  is a one-variable function —— function of distance, thus
its simple form makes data convenient to store and calculate. Another important advantage of
RBF is the powerful capacity of approximation that it can almost approximate all functions.

Depending on its scoped, RBFs can be divided into two categories: Globally supported RBFs
(GS-RBFs) and compactly supported RBFs(CS-RBFs) [15][16][17]. It limits the former's use
for calculating large structure that the calculation process will produce ill-conditioned
matrixes. CS-RBFs can make the coefficient matrix has the characteristic of banded sparse.

The method combined RBFs approximation with collocation point methods has many
advantages, such as meshless, simple form, no numerical integration and high calculation
efficiency. But at present both domestic and overseas researches about solving fractional
differential equations using RBFs are all related to boundary problems without time parameter.
The main reason lies in the independent variable of radial basis function is spatial distance.
Xu [18] have presented the concept of transformation from spatial distance to time interval,
then we will try to solve initial problems by using RBFs.

First, we take a single-degree-freedom dynamic system (1) as an example to explain the
numerical method.
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The time domain Ω can be discretisized with n nodes ti , i = 1, 2, ···, n, then the approximate
function uh(t) of displacement function u(t) can use a linear combination of radial basis
function φi (t) which is taking ti as the center to expresseitself as:
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Eq. (2) is a basic expression of RBFs interpolation, aj denotes a series of unsolved coefficients,
a=[a1, a2, ···, an]T

，Φ(t)=[ Φ1(t), Φ2(t), ···, Φn(t)]T. Put CS-RBF as interpolation cardinal
function, in this paper, we use Wu function [15]:
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In Eq. (3), For this method, we have r=||t-ti||2 /Rmaxi . And Rmaxi is support radius of ti , the
maximum distance of ti to any other points, which means that the effective region of ti is the

whole domain. (1-r)+ can be defined as  
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Because traditional collocation methods have large numerical oscillation, for the characteristic
that the objective solution of system (1) is the second derivative of u, thus we present the
interpolation function combined displacement with velocity, as show in Eq. (4):

     1
1

1

d
d

n
h

j j
j

t
u t a t b

t





  (4)

In Eq. (4), there add a linear combination of first derivative of the initial time. According to
the authors’ solving experience [19], if we add a second derivative term on the basis of Eq. (4),
then get the Eq. (5), the numerical oscillation can be diminished significantly. And adding the
initial condition of the second derivative term as a new constrain, this initial constrain has
explicit physical and mathematical interpretations which are the acceleration of initial time
and that the second derivative satisfies the differential equation in the initial time.
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We can find Eq. (5) requires the RBF has high-order continuity, and taking high-order
derivative of CS-RBFs will cause an ill-conditioned coefficient matrix. So we finally
presented substituting helper function for high-order derivative term, as follows:
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In Eq. (6), b1, b2 denotes additional coefficient, 1(t) is helper function, and we can use other
CS-RBF as an available helper function, for example,
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Then plugging ti ( i = 1, 2, ···, n, 1, 1 ) into the interpolation Eq. (6), we can obtain n+2 linear
equations Eq. (7):

Aa u (7)
In Eq. (7),
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，

u=[u1, u2, ···, un , v1 , v2]T where v1、 v2 denote additional unknowns which respectively
represent the initial velocity and acceleration.

It is easy, from Eq. (7), to show that a=A-1u and using a in Eq. (6) gives
     T 1hu t t t Φ A u N u . (8)



Let N(t)= ΦT(t)A-1. We could definite N(t) is time characteristic function, similar to finite
element shape function, and A is dynamical characteristic matrix. Eq. (8) is an analytic
equation, then differentiating Eq. (8) with respect to t gives the expression of velocity Eq. (9),
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In Eq. (9),
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Similarly, the expression of acceleration Eq. (10) as follows:
   t tu N u . (10)

By substituting Eq. (8), (9) and (10) into dynamic system (1) and combining the external
loads vector p, we obtain  m c k t   N u N u u p , it follows that

   m c k t   N N E u p . (11)
And according to the initial conditions of velocity and adding initial acceleration, we have
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Combining Eq. (11), (12) and (13), we get n+2 linear equations, thus the second-order
differential equation is discretized into linear algebraic equations. Substituting the initial
displacement conditions and solving the equations we obtain the solution of u. Then plugging
u back into Eq. (9) and (10) respectively gives the velocity and acceleration at every time note.

As demonstrated above, the radial basis function approximation method has no theoretical
assumption except the interpolation, and uh(t) is an analytic expression, so taking the third
derivative of Eq. (8) can solve the jerk effectively, we will elaborate on this in Example 3.3.

Next, for jerk equations of third-order dynamic system with the form of  xxxJx  ,, , we can
present the interpolation function Eq. (14)
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Using the similar process, the jerk equation is discretized into n+3 nonlinear algebraic
equations

 , , 0N x J x N x N x    ,
where N denotes time characteristic matrix. And using initial displacement, velocity,
acceleration and jerk as the constrains, by replacing functions at initial time with
corresponding constrains, then using iterative method to calculate the nonlinear algebraic
equations, we can obtain the solutions of the third-order equation. We will give a numerical
example in Example 2.4.

2 Numerical Examples Analyses

2.1 Forced vibrations of a single degree of freedom
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Analytic solution of system (15) is u = e-2t(cost+2sint)-[8cos(2t)-sin(2t)]/65. If time domain is
t = 60.8 s，time interval is ∆t = 0.1 s, using RBFs approximation methods, choosing Eq. (4)
as interpolation function and using (0) 57 / 65u  and (0) 2 / 65u  as initial conditions, then
choosing Eq. (6) and adding a second-order differential initial condition (0) 293 / 65u   to
solve system (15), calculating the relative errors of solutions in first six notes as shown in
Table 1, we are confident that the latter can diminish numerical oscillations obviously
improve solving accuracy.

Using other traditional methods to solve system (15) with also ∆t = 0.1 s, and relative errors at
some moments are displayed in Table 2. It is seen that, RBFs approximation methods, as
compared to Newmark method (NM) and Wilson-θ method (W-θ), improve the solving
accuracy greatly and it has high stability of accuracy for long periods.

Table 1. The relative errors for RBFs approximation methods with different
interpolation function and initial conditions

t(s)
Interpolation function (6) with (0)u Interpolation function (4) without (0)u

displacement velocity acceleration displacement velocity acceleration
0 0 2.59×10-15 1.82×10-15 0 3.94×10-4 2.39×10-1
0.1 1.46×10-4 6.20×10-3 3.16×10-3 3.30×10-3 1.08×10-1 5.62×10-2
0.2 3.09×10-4 1.24×10-3 2.58×10-3 6.59×10-3 3.19×10-2 6.30×10-2
0.3 4.14×10-4 7.92×10-4 5.75×10-3 8.98×10-3 1.62×10-2 0.12×10-1
0.4 5.00×10-4 2.23×10-4 1.12×10-1 1.08×10-2 5.36×10-3 2.50
0.5 5.63×10-4 4.27×10-4 4.71×10-3 1.22×10-2 8.42×10-3 9.85×10-2

Table 2. The relative error of the solution of displacement, velocity and acceleration
with several numerical methods

t(s) displacement velocity acceleration
NM W-θ RBF NM W-θ RBF NM W-θ RBF

2 0.0051 0.0150 3.70×10-4 0.0048 0.0192 2.94×10-4 0.0444 0.2328 2.34×10-3
4 0.0166 0.0189 4.40×10-6 0.0016 0.0132 4.18×10-9 0.0086 0.0187 5.30×10-6
16 0.0003 0.0193 1.40×10-6 0.0039 0.0004 2.20×10-6 0.0070 0.0227 1.96×10-6
34 0.0085 0.0029 8.33×10-6 0.0029 0.0174 3.30×10-6 0.0019 0.0004 4.00×10-7
40 0.272 0.6670 5.21×10-5 0.0005 0.0114 9.70×10-8 0.2666 0.6656 5.10×10-7
60 0.0005 0.0199 1.58×10-5 0.0036 0.0012 1.27×10-5 0.0072 0.0233 3.50×10-6

2.2 Bending Vibration of Simply Supported Beam

A simply supported beam with constant section is illustrated in Fig. 1, and with length L=6 m,
high of cross section h=0.02m, width b=0.02m, cross sectional area A=bh, section inertia
I=bh3/12, density ρ=4×104 kg/m3, elastic modulus E=210 GPa and poisson ratio μ=0.3.
Suppose the beam is damping-free, and there is a lateral load q(x,t)=F0sin(ω0t)δ(x-L/2).
The theoretical solution of vibration displacement of this beam is
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If F0=1 kN, ω0=4 Hz, t = 64 s, ∆t = 0.2 s, dispersing the beam into ten cubic Hermite finite
elements, using RBFs approximation method to solve this problem, some results are shown in
Fig. 2. It is seen that, compared to the solutions [20] of newmark method and Wilson-
Wilson-θ method, the solving accuracy of this method has improved and the errors do not
accrue with time.

Figure 1. The sketch of simple supported beam bending vibration

(a) Displacement (d) Displacement

(b) Velocity (e) Velocity

(c) Acceleration (f) Acceleration

Figure 2. (a), (b) and (c) show the numerical solution and the exact solution at every

node at t=3s,30s, 60s; (d), (e) and (f) show the numerical solution and the exact solution

at the middle point in different time.



2.3 Three Stories Frame Structure

Fig. 3 shows a sketch of three-storey shear frame structure, the masses of each storey,
including columns, are m1=1.8×105 kg, m2=2.7×105 kg, m3=2.7×105 kg, respectively. Lateral
stiffness are k1=9.8×107 N/m, k2=1.96×108 N/m, k3=2.45×108 N/m. We will solve the
dynamical responses and the jerk of this structure with Rayleigh damping under horizontal
seismic excitation (as shown in Fig. 4), and the 1st and 2nd damping ratio are ξ1=ξ2=0.05. The
initial conditions are u(t)= 0, u (t)=0, and adding u (0)=0.014, initial acceleration of ground
vibration.

Figure 3. Sketch of three stories shear frame

The mathematical model can be expressed as
    gMU CU KU MU   , (16)

Where gU and U are respectively horizontal acceleration caused by seismic and relative
acceleration, and the former also can be called carrier acceleration. For jerk, let us assume gU

is derivable, we have
g   MU CU KU MU    , (17)

Then
abs     MU CU KU , (18)

abs g   U U U is absolute jerk of the structure. Using RBFs approximation method, we solved
the solutions and some of them are shown in Fig. 5.

It is important to note that the Eq.(18) can’t be used in traditional method, such as Newmark
method, Wilson-θ method, and so on, because of the theoretical hypothesis. And in this
example, although the jerk is also an object solving, we can't use the Eq.(14) because of a lack
of initial jerk regarded as a constrain.

Figure 4. Transport acceleration causing by earthquake



(a) Displacement (b) Absolute jerk

Figure 5. the numerical results at the top storey

2.4 Third-order Mechanical Oscillations

Following Gottlieb [21], the most general jerk function which is invariant under time- and
displacement- reversals is

3 2 2x x x x x xxx xx               , (19)
where α, β, γ, δ, and ε are all constants, and at least one of β, δ and ε should be different from
zero. In addition, if ε=0, it is required that δ≠-2α such that the Eq. (19) is simply not the secon
d-order ordinary differential equation. The corresponding initial conditions are

 0 0x  ,  0x B ,  0 0x  .
In this paper, we consider the case for α = β=1, γ= δ= ε=0 and B=0.5. For this situation, Eq.
(19) becomes
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. (20)

Using RBFs approximation method with ∆t=0.1s and choosing Eq. (14) as interpolation
function, we get the period of the solution is t=10.210655 s. And the period using fourth-order
accurate Runge-Kutta method with ∆t=0.001s is 10.210761s [12][21]. The solution of
displacement and jerk are shown in Fig. 6.

(a) Displacement (b) Jerk

Figure 7. Numerical results of Eq. (20) using RBFs approximation method with Eq. (14)



3 Conclusions

This paper developed a new approach for solving structural dynamic responses and jerk based
on the powerful approximation capability of RBFs. The practical calculation examples show
that the RBFs approximation method has great astringency and high solving accuracy.
Furthermore, this method also has the following advantages:

1. RBFs approximation method is different from stepwise direct integration methods. it
needn't numerical integration, has high calculation efficiency, and has no recursive formulae
and error accumulation.

2. We proposed the combined interpolation expression of all-order derivatives and it is
necessary to add initial condition that the order is same as the differential equation, which can
decrease the numerical oscillation significantly.

3. This method has no assumption of load changes and acceleration in time interval, can
solve jerk and jerk equation effectively, and it breaks the limitation that stepwise direct
integration methods are difficult to solve jerk because of inherent assumptions.

The method of RBFs approximation has clear advantages and it may well become a common
method.
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