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Abstract 

Accurate cap thickness quantification is of fundamental importance for vulnerable plaque research.  
A segmentation method  for intracoronary optical coherence tomography (OCT) image based on 
least squares support vector machine (LS-SVM) to characterize plaque lumen surface, segment 
borders and fibrous cap for plaque cap thickness when image quality is not high enough, especially 
at the location of bifurcation.  

In vivo intravascular ultrasound (IVUS) and OCT coronary plaque data were acquired from one 
patient with informed consent obtained. Manual segmentation in OCT images based on the 
combination of VH-IVUS image and OCT image were given by experts as the gold standard. 
Processed OCT images were trained and tested via LS-SVM by two methods (M1 and M2). In M1, 
500 pixels were randomly selected from each lipid class and vessel tissue class for 9 OCT images. 
The training data set would be the feature vectors from 9000 pixels. In M2, a procedure similar to 
leave-one-out cross validation was employed as any 8 out of 9 images were used as training data 
while the remaining one as the testing data. Borders and lipid contours were extracted from 
prediction results for cap thickness. Virtual histology (VH) IVUS data were processed with 
minimum cap thickness set as 50 and 180 micron to generate IVUS50 and IVUS180 data sets, 
respectively. Cap thickness from manual segmentation, predictions from M1 and M2 based LS-
SVM, IVUS50 and IVUS180 data sets were compared.   

The accuracy of M1 and M2 were above 76%. Average of mean cap thickness (unit: mm) from 9 
images was 0.561 (manual), 0.470 (M1), 0.463 (M2), 0.128 (IVUS50) and 0.204 (IVUS180).  
Average of minimum cap thickness (9 slices) was 0.390 (manual), 0.288 (M1), 0.282 (M2), 0.040 
(IVUS50) and 0.165 (IVUS180). IVUS50 and IVUS180 underestimated cap thickness.  The mean 
cap thickness from prediction were close to manual results (error<18%). The point-point cap 
thickness from five groups showed that the prediction based LS-SVM had agreement with manual 
segmentation. 



 
 

 
 

Conclusion. The segmentation methods based on LS-SVM provided reasonable accuracy for 
plaque cap thickness quantification.  More data sets and better gold standard are needed for further 
improvement.   
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1. Introduction 

Coronary atherosclerotic plaques often rupture without warning and cause acute syndromes, such 
as heart attack. It is commonly believed that atherosclerotic plaques rupture is closely associated 
with thin fibrous cap (cap thickness < 65 μm) which covers a large lipid-rich necrotic core [1-2]. 
Advanced medical imaging technologies have been employed to identify the plaque morphology. 
Intravascular ultrasound (IVUS) is one of the major imaging tools to visualize coronary plaques, 
and is also extensively used for constructing computational coronary models. Virtual histology 
IVUS (VH-IVUS) segments the grayscale IVUS data into four tissue types: fibrotic, fibro-fatty, 
lipid necrotic core and dense calcified tissue [3-5]. Although VH-IVUS has provided unique 
perspectives on in vivo human atherosclerotic plaque and novel insights into plaque morphology 
and natural history, it still has limited resolution of 150-250 micron and is not able to detect thin 
plaque cap with thickness around 65 μm, the critical threshold value determined from 
histopathological studies [1, 6]. Quantifying cap thickness and its impact on stress/strain 
calculations remains to be a great challenge for plaque research.  
 
In recent years, optical coherence tomography (OCT) has emerged as an imaging modality to 
identify vulnerable plaques from non-vulnerable plaques to enhance future risk prediction. This 
medical imaging technology provides a resolution of approximately 10 μm which is far better than 
what IVUS could achieve. OCT has the capacity of characterizing the superficial structure of the 
vessel in greater detail [7-8]. Traditionally, the segmentation of OCT images to detect lumen and 
plaque components has been performed manually [9-10]. Rabel et al. introduced a manual method 
combined IVUS/VH-IVUS and OCT images to characterize the plaque [11]. The combination of 
IVUS/VH-IVUS and OCT images provided more complete plaque information. However, Manual 
segmentation is a time-consuming procedure and it also suffers higher inter- and intra-user 
variability. To overcome these limitations, some approaches for semi-automatic and fully-
automatic segmentations have been proposed. Wang et al. introduced a semiautomatic 
segmentation of calcified plaques which is signal-poor regions with sharply delineated borders in 
OCT images [12]. Wang et al. provided semiautomatic segmentation using a dynamic 
programming algorithm to quantified fibrous cap [13]. The methodology using attenuation 
coefficients to characterize plaques [14-15]. Athanasiou developed an automated methodology for 
the segmentation of the composition of the superficial plaque in OCT images [16]. Some 
researchers used support vector machine (SVM) to classify plaque components [17-18]. Most 
methods in previous literatures aimed at segmenting high quality images. However, image quality 
is often affected by bifurcation, thrombus, and residual blood, etc. Necrotic core is signal-poor 
regions which have poor diffuse borders in OCT images. Accurate detection of lipid-rich necrotic 
core (lipid in short) is still a challenging task.  
 
While OCT has high resolution and can quantify thin cap thickness, it has limited penetration (1 to 
2 mm) and is often unable to provide complete information of the whole vessel, especially at the 



 
 

 
 

locations with large lumen, bifurcation and increased plaque burden [7]. In this paper, we 
introduced an OCT segmentation method to characterize plaque lumen surface, segment borders 
and fibrous cap for plaque cap thickness when image quality is not high enough, especially at the 
location of bifurcation. Support vector machine was used in separating lipid component and vessel 
tissue. Validation was performed based on the segmented results from experts on VH-IVUS and 
OCT images. 
 
2. Data and Methods 

2.1 Data acquisition 

In vivo OCT data were acquired from one patient (male, age 51) using ILUMIEN OPTIS System, 
and Dragonfly JP Imaging Catheter (St. Jude, Minnesota, MN) with informed consent obtained. 
During image acquisition, blood was displaces by the injection of Dextran, and the OCT catheter 
was traversed to the region of interest an automatic pullback at 20mm/s was performed. OCT raw 
data were logarithmically compressed grayscale images with pixel intensity recorded as a two-
dimensional matrix in polar coordinates I(r,Ɵ), where r is the range dimension and  Ɵ is the 
acquisition angle. The OCT image in polar coordinate I(r,Ɵ) was converted to Cartesian 
coordinates I(i,j) for later image processing, using the relations: i = r cos Ɵ, j = r sin Ɵ. OCT images 
in Cartesian coordinates consists of 1024 by 1024 pixels representing a real physical size of 10mm 
by 10mm (pixel size: 9.9 by 9.9 micron). 
 
IVUS images were recorded for the same segment of coronary using a 20MHz, 2.9F phased-array 
catheter (Eagle Eye Gold, Volcano Therapeutics, Rancho Cordova, CA). Following the OCT image 
acquisition, the IVUS catheter was traversed distally though the artery to the region of interest at 
an automatic pullback speed of 0.5mm/s. VH-IVUS images were created based on IVUS images 
by using autoregressive models to differentiate four plaque types: fibrous, fibro-fatty, necrotic core 
(lipid) and dense calcified tissue (calcification, Ca in short). Each plaque type is indicated by 
different color on the IVUS-VH image. The positions of both catheters were recorded with 
angiography for the co-registration of OCT and IVUS images. All imaging data were digitally 
stored for offline analysis.   
 
Nine OCT images were selected from OCT data set of this patient with co-registered VH-IVUS 
images. Images from the locations of bifurcation were also considered in this paper. Tiny calcium 
was neglected in OCT images since fibrous cap was our main interested region. Experts provided 
manual lipid contours in OCT images based on the combination of VH-IVUS and OCT images 
following the standard procedure described in [11]. The manual lipid delineation was considered 
as the standard of classification and saved as image masks for comparison with our segmentation. 
Figure 1 shows VH-IVUS and OCT images as well as manually segmented lipid and lumen 
contours.   
  



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Nine matching VH-IVUS and OCT images and manual segmented contours. (a) Nine 
VH-IVUS slices; (b) Nine matching OCT images with the segmented contours; (c) Manual 
segmented contours combined OCT and VH-IVUS. Colors used in VH-IVUS: Red necrotic core, 
White dense calcium, Dark Green Fibrous, Light Green Fibro-Fatty.  
 

2.2 Image processing 

OCT images in polar coordinate were processing to detect lumen border by applying the following 
steps: filter, Otsu’s thresholding method and removal of catheter and artifacts. More details of 
automatic lumen detection were given in [19-20]. Since fibrous cap thickness was an important 
focus in this study, the lumen border was expanded from center of catheter outward 1mm as the 
outer border to include enough space for fibrous cap characterization. At the locations of 
bifurcation, branches of the coronary without catheter passing through were removed along with 
its reduced artifacts. Thus the region of interest (ROI) was determined as the area bounded by 
lumen and outer border with artery branches and other artifacts removed. The detection of borders 
and the determination of ROI were showed in Figure 2. 
 
 
 
 
 
 
 
 
 
 
Figure 2. Nine OCT images with ROI and borders of ROI. (a) ROI in OCT images. White color 
means ROI. (b) Borders of ROI. 

2.3 Feature extraction and selection 

Local binary patterns (LBPs), Gray level co-occurrence matrices (GLCMs), entropy and mean 
value were calculated as features in this work. All features were computed in an 11 by 11 pixels 

(a) VH-IVUS Slices  

(b) Matching OCT Slices and Segmented Contours
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(c) Manual Segmented Contours 
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(b) Borders of ROI 



 
 

 
 

neighborhood window in ROI. The window size had been tested to be the best in [16]. Gray level 
co-occurrence matrices (GLCMs) are a well-known method for texture analysis and 32 statistical 
features were extracted from GLCMs which were contrast, correlation, energy and homogeneity 
features for each of eight angles (Ɵ= 0, 45, 90, 135,180, 225, 270, 315 degree). LBPs is an image 
operator used to describe the local texture feature with rotating invariance and grayscale invariance. 
Rotation invariant LBPs with P=8, R=1 was used to extract ten features. Details and parameters 
can be found from [16, 21].  
 
Superabundant features would affect the classification accuracy of classifier. Twenty-eight features 
were selected to improve the accuracy which contains 16 GLCMs (The four aforementioned 
features at each angle Ɵ= 0, 45, 90, 135 degree), 10 LBPs, entropy and mean value. These 28 
features were the optimal feature combination to reach the highest accuracy for our classification 
algorithm based on this patient OCT images. 
 

2.4 Classification 

The data base to feed support vector machine (SVM) were assembled by all selected features 
extracted from all pixels in ROI into a data matrix with dimension n by m, where n is equal to the 
number of pixels and m is the length of the feature vector, more specifically 28 features in this 
work.  Since fibrous cap could be identified once the lipid area is determined, only two classes are 
needed to be characterized indicating two different tissue types: lipid and vessel tissue. Since the 
recognitions of fibrous tissue and fibro-fatty tissue have no impact on the measurement of fibrous 
cap, so they are considered as vessel tissue. SVM separates feature patterns for two classes by 
defining one hyperplane that maximizes the separating margin between two classes. Least squares 
support vector machine (LS-SVM) follows the structural risk minimization principle of kernel 
function as learning machine which is an improved the conventional SVM. LS-SVM classifier was 
chosen to classify the lipid and vessel tissue with Gaussian Radial Basis Function as the kernel 
function and steepest descent method for searching optimal parameters. More details about LS-
SVM can be found in [22-23]. 
 
Two methods were proposed to select the training data set to fit SL-SVM classifier. In the first 
method (denoted as M1), 500 pixels were randomly selected from each lipid class and vessel tissue 
class for 9 OCT images. The training data set would be the feature vectors from 9000 pixels. The 
rest of non-selected pixels in ROI of each image would be treated as testing data set, The process 
was repeated ten times to stabilize the classification error estimation. While in the second method 
(denoted as M2), a procedure similar to leave-one-out cross validation was employed as any 8 out 
of 9 images were used as training data while the remaining one as the testing data.  For each group 
of 8 OCT images, 500 pixels were random selected from lipid class and vessel tissue class each to 
give 8000 pixels. The testing set consists of all pixels in ROI of the rest one OCT image. Nine 
times training and testing were done in this method. Figure 3 showed nine images of prediction 
from LS-SVM after processing using M1 and M2. 
  



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Prediction by LS-SVM from M1 and M2.  (a) Prediction of 9 images from M1 after 
processing; (b) Prediction of 9 images from M2 after processing. Colors used in Prediction images: 
Red necrotic core, Green Fibrous and Fibro-Fatty.  
 

2.5 Contours extraction 

Lipid contours were extracted and its distance with lumen contour were calculated as cap thickness. 
The fibrous cap thickness was the greatest concern in this study, so lipid contours were extracted 
to quantify the cap thickness. According to the prediction of LS-SVM, the prediction images were 
processed to extract contours. Some scattered pixels in the images of prediction were filter to find 
the clear border in fibrous cap. Parametric active contour model was used for the lipid border 
detection. Figure 4 showed contours from active contour model. 
 
 
 
 
 
 
 
 
 
Figure 4. Lipid contours and borders. Color contours: Red lipid contours, Blue borders. 
 

2.6 Co-registered VH-IVUS segmentation 

Cap thickness was the concerned part in this study. IVUS resolution limitation (150 μm), and 
original VH-IVUS data often had lipid core exposed directly to lumen, i.e., there is no fibrous cap 
covering the lipid core. A minimum cap thickness has to be added to VH-IVUS data so that the 
lipid cores would be covered. In our previous publications, 50 μm and 180 μm cap thickness were 
often added in VH-IVUS segmentation where 50 μm was chosen as it is a reasonable representative 
thin cap number < 65 μm threshold. VH-IVUS images were segmented by the custom-made 
software Atherosclerostic Plaque Segmentation software. In this work, minimum cap thickness 
value (50 μm and 180 μm) were set in our segmentation software. The segmented contours denoted 
as IVUS50 and IVUS180 (see Figure 5). 

(a) Prediction from M1 after processing

(b) Prediction from M2 after processing 
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(b) OCT contours from M2 



 
 

 
 

 
 
 
 
 
 
 
 
Figure 5. Segmented contours from IVUS50 and IVUS180. Color contours: Red lipid contours, 
Blue borders. 
 
3. Results 

3.1 Accuracy       

The features data were used to train LS-SVM classifier which, in turn, would predict each data 
point in the testing data set into one of the classes (lipid and vessel-tissue) using the methods M1 
and M2 described in Section 2.4. The prediction results was compared to manual segmentation to 
evaluate the prediction accuracy (denoted as Acc) defined as in the following formula: 

                                                                                              (1) 

Lipid and vessel tissue were set positive and negative pattern, respectively. Here TP is the number 
of true positive outcomes, FP is the number false positive outcomes, TN is the number of true 
negative outcomes and FN is the false negative outcomes. Sensitivity (Sen) and specificity (Spe) 
were also calculated using the formulas below to avoid the reliance of the uneven distributed data 
in two classes. 

                                                                                              (2) 

                                                                                              (3) 

Table 1 gives the prediction results from ten times repeated experiment using M1. Table 1 gives 
the prediction results from ten times repeated experiment using M1. Sensitivity was about 10% 
higher than specificity for most OCT images. For the extreme worst case, sensitivity and specificity 
would still above 70%, while will achieve up to 97% for good cases during the ten times of trial. 
The average values of sensitivity and specificity are 89.6% and 78.6% respectively. 
 

Table 2 compares the predictions accuracy of M1 and M2. Based on the average values of 9 OCT 
images, M1 showed a slightly better overall prediction accuracy than M2 (M1 (79.7%) vs M2 
(76.1%)). For Sensitivity, M1 provided much higher value than M2 (M1 (89.6%) vs M2 (76.0%)) 
while the specificity values are quite close (M1 (78.6%) vs M2 (76.6%)). The good agreement 
between two methods demonstrated the stability of two automatic segmentation method proposed 
in this paper. 
 
  

(b) IVUS180 contours

(a) IVUS50 contours 



 
 

 
 

Table 1. Method 1 sensitivity and specificity from 10 tests. 
 

Sensit
ivity S1 S2 S3 S4 S5 S6 S7 S8 S9 

T1 0.952 0.951 0.860 0.790 0.970 0.910 0.886 0.829 0.930 
T2 0.940 0.930 0.851 0.791 0.974 0.922 0.905 0.851 0.927 
T3 0.959 0.929 0.852 0.796 0.963 0.919 0.913 0.838 0.937 
T4 0.941 0.943 0.859 0.834 0.979 0.906 0.922 0.851 0.941 
T5 0.970 0.967 0.866 0.810 0.971 0.897 0.892 0.816 0.938 
T6 0.948 0.935 0.862 0.777 0.968 0.915 0.919 0.855 0.941 
T7 0.948 0.952 0.856 0.783 0.959 0.906 0.882 0.825 0.908 
T8 0.945 0.943 0.874 0.782 0.965 0.878 0.885 0.826 0.938 
T9 0.952 0.949 0.843 0.804 0.968 0.865 0.883 0.798 0.910 
T10 0.945 0.914 0.817 0.805 0.947 0.896 0.894 0.821 0.880 
Ave. 0.950 0.941 0.854 0.797 0.966 0.901 0.898 0.831 0.925 

Average sensitivity from all slices:0.896 
Specif
icity 

S1 S2 S3 S4 S5 S6 S7 S8 S9 

T1 0.809 0.743 0.787 0.808 0.720 0.769 0.715 0.854 0.847 
T2 0.813 0.741 0.790 0.804 0.721 0.770 0.722 0.852 0.845 
T3 0.813 0.736 0.786 0.799 0.730 0.766 0.714 0.850 0.842 
T4 0.828 0.760 0.822 0.812 0.729 0.776 0.724 0.860 0.852 
T5 0.804 0.732 0.785 0.788 0.736 0.789 0.731 0.869 0.858 
T6 0.820 0.749 0.801 0.813 0.748 0.746 0.691 0.844 0.843 
T7 0.817 0.744 0.795 0.807 0.726 0.775 0.730 0.860 0.847 
T8 0.817 0.762 0.805 0.827 0.750 0.797 0.742 0.856 0.854 
T9 0.821 0.753 0.798 0.820 0.740 0.786 0.732 0.852 0.852 
T10 0.770 0.715 0.705 0.745 0.739 0.771 0.728 0.849 0.834 
Ave. 0.811 0.743 0.787 0.802 0.734 0.774 0.723 0.855 0.847 

Average specificity from all slices:0.786 
 
 

Table 2. Segmentation accuracy for lipid and fibrous tissue using M1 and M2.  
Sen: Sensitivity; Spe: Specificity; Acc:  Accuracy. 

 
 M 1 M 2 

Slice# Sen Spe Acc Sen Spe Acc 
1     0.950     0.811     0.834 0.829 0.789 0.795 
2     0.941     0.743     0.771 0.792 0.714 0.725 
3     0.854     0.787     0.799 0.720 0.761 0.754 
4     0.797     0.802     0.800 0.648 0.785 0.743 
5     0.966     0.734     0.743 0.900 0.685 0.693 
6     0.901     0.774     0.782 0.701 0.762 0.758 
7     0.898     0.723     0.740 0.787 0.717 0.724 
8     0.831     0.855     0.852 0.646 0.844 0.820 
9     0.925     0.847     0.854 0.817 0.835 0.834 

Ave. 0.896       0.786    0.797 0.760 0.766 0.761 



 
 

 
 

 

3.2 Cap thickness  

For all 9 co-registered OCT/VH-IVUS images, five different segmentation methods (manual 
segmentation (denoted as Ma), M1, M2, IVUS50 and IVUS180) were applied to detect the lipid 
contours and lumen borders. The cap thickness between lumen and a particular lipid was calculated 
for many locations on the lumen. The average value and minimum over the cap is recorded in 
Table 3 as mean cap thickness and min cap thickness. Using manual segmentation as standard, M1 
and M2 generally gave better results than IVUS50 and IVUS180. The average of mean cap 
thickness (9 slices, unit: mm) from 5 groups were 0.561, 0.470, 0.463, 0.128, and 0.204, 
respectively. Average values from M1 and M2 were about same value. The average values of M1, 
M2, IVUS50 and IVUS180 were 16.3%, 17.4%, 77.2% and 63.6% less than Ma, respectively. 
Average of minimum cap thickness (9 slices) from 5 groups were 0.390, 0.288, 0.282, 0.040, and 
0.165, respectively. The average min values of M1, M2, IVUS50 and IVUS180 were 26.0%, 
27.5%, 89.6% and 57.6% less than Ma, respectively. 
 

Table 3. Mean cap thickness and minimum cap thickness for 9 slices from five groups. 
 

Mean Cap Thickness(mm) 

Slice# Ma M1 error M2 error 
IVUS

50 
error 

IVUS 
180 

error 

1 0.597 0.484 18.9% 0.459 23.1% 0.166 72.2% 0.239 60.1%
2 0.683 0.483 29.2% 0.446 34.8% 0.123 82% 0.208 69.5%
3 0.765 0.492 35.7% 0.478 37.5% 0.094 87.8% 0.196 74.4%
4 0.337 0.383 13.5% 0.350 3.9% 0.120 64.5% 0.203 39.8%
5 0.575 0.399 30.6% 0.455 20.9% 0.173 69.9% 0.216 62.5%
6 0.491 0.484 1.3% 0.459 6.5% 0.087 82.3% 0.178 63.6%
7 0.477 0.412 13.6% 0.412 13.7% 0.139 70.9% 0.209 56.2%
8 0.539 0.572 6.2% 0.549 1.9% 0.144 73.3% 0.210 61.1%
9 0.584 0.515 11.9% 0.561 4.7% 0.103 82.3% 0.181 69% 

Ave. 0.561 0.470 16.3% 0.463 17.4% 0.128 77.2% 0.204 63.6%
Min Cap Thickness(mm) 

1 0.497 0.308 38% 0.314 36.9% 0.050 89.8% 0.172 65.4%
2 0.429 0.330 23.1% 0.225 47.6% 0.042 90.2% 0.165 61.5%
3 0.539 0.285 47.2% 0.285 47.2% 0.035 93.5% 0.170 68.5%
4 0.158 0.150 5.0% 0.163 3.0% 0.033 78.9% 0.159 0.5% 
5 0.331 0.163 50.8% 0.227 31.6% 0.042 87.4% 0.165 50.3%
6 0.326 0.285 12.7% 0.274 16.0% 0.039 88.1% 0.162 50.5%
7 0.392 0.338 13.7% 0.295 24.7% 0.043 89.2% 0.167 57.3%
8 0.445 0.413 7.3% 0.427 4.0% 0.050 88.7% 0.164 63.1%
9 0.390 0.324 16.8% 0.333 14.5% 0.030 92.4% 0.163 58.2%

Ave. 0.390 0.288 26.0% 0.282 27.5% 0.040 89.6% 0.165 57.6%
 

3.3 Point-point cap thickness 

The cap thickness were compared by point to point for from five segmentation methods. Some 
points from IVUS contours were matched one-by-one by sharing the same location with some 
points from OCT contours. Slice 4 had the minimum of min cap thickness less than 180μm 



 
 

 
 

according to the manual segmentation (0.158 mm), and the slice 1 had the maximum of min cap 
thickness in 9 slices. So slice 1 and slice 4 were selected to match points for comparing the point-
point cap thickness. The matching points were showed in Figure 6. And the cap thickness of 
matched points were given in Table 4 and Table 5. Point 1-Point 4 from slice 4 were close to 180 
μm, and the cap thickness difference between M1 and M2 were less than 14%. The cap thickness 
values of IVUS180 were overestimated about 10% than the value from OCT. The cap thickness 
values from IVUS50 were underestimated about 70% than the cap thickness from OCT. Point 10-
14 from slice 4 were about 300μm. The cap thickness of IVUS50 and IVUS180 were 
underestimated by about 80% and 50%. The cap thickness values of two segmentation methods 
(IVUS50 and IVUS180) were largely determined by the previously educated guesses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The point-point cap thickness in slice 1 and slice 4. (a) S1 OCT image overlaid with S1 
IVUS image. (b) S4 OCT image overlaid with S4 IVUS image. (a-1) cap thickness from Manual 
segmentation in slice 1. (a-2) cap thickness from M1 in slice 1. (a-3) cap thickness from M2 in 
slice 1. (a-4) cap thickness from IVUS50 in slice 1. (a-5) cap thickness from IVUS180 in slice 1. 
(b-*) is in slice 4, and similar to (a-*). 
 
  

(b) IVUS+OCT, S4(a) IVUS+OCT, S1

(a-1) Ma, S1 (a-4) IVUS50, S1 (a-5) IVUS180, S1(a-3) M2, S1(a-2) M1, S1 

(b-1) Ma, S4 (b-4) IVUS50, S4 (b-5) IVUS180, S4(b-3) M2, S4(b-2) M1, S4



 
 

 
 

Table 4. Point- point cap thickness in slice 1 from five groups. 
 

Point to Point Cap thickness(mm) 
Slice 1 
point 

Ma M1 M2 IVUS50 IVUS180 

1 0.642 0.538 0.539 0.057 0.171 
2 0.579 0.542 0.551 0.054 0.183 
3 0.543 0.443 0.460 0.054 0.171 
4 0.522 0.405 0.428 0.054 0.176 
5 0.507 0.398 0.376 0.053 0.179 
6 0.500 0.411 0.384 0.057 0.171 
7 0.497 0.422 0.387 0.053 0.175 
8 0.501 0.416 0.351 0.054 0.172 
9 0.513 0.434 0.350 0.049 0.178 
10 0.544 0.456 0.467 0.052 0.180 
11 0.591 0.434 0.406 0.053 0.186 
12 0.644 0.440 0.346 0.076 0.191 
13 0.675 0.442 0.328 0.082 0.198 
14 0.681 0.395 0.321 0.105 0.195 
15 0.669 0.400 0.352 0.147 0.191 
16 0.650 0.411 0.314 0.149 0.197 
17 0.623 0.405 0.347 0.159 0.186 
18 0.596 0.451 0.364 0.202 0.203 
19 0.572 0.497 0.368 0.224 0.226 
20 0.552 0.507 0.532 0.242 0.244 
21 0.536 0.485 0.472 0.253 0.254 
22 0.524 0.524 0.415 0.285 0.287 
23 0.515 0.537 0.571 0.296 0.296 
24 0.515 0.526 0.608 0.310 0.312 
25 0.528 0.535 0.631 0.326 0.327 
26 0.568 0.563 0.565 0.339 0.339 
27 0.642 0.591 0.540 0.345 0.345 

 
  



 
 

 
 

Table 5. Point- point cap thickness in slice 4 from five groups. 
 

Point to Point Cap thickness(mm) 
Slice 4 
point 

Ma M1 M2 IVUS50 IVUS180 

1 0.158 0.150 0.165 0.052 0.180 
2 0.159 0.171 0.170 0.048 0.179 
3 0.164 0.189 0.173 0.045 0.172 
4 0.172 0.191 0.202 0.044 0.169 
5 0.182 0.192 0.223 0.038 0.166 
6 0.190 0.246 0.204 0.038 0.167 
7 0.303 0.314 0.290 0.050 0.173 
8 0.307 0.300 0.289 0.055 0.178 
9 0.312 0.321 0.279 0.051 0.171 
10 0.319 0.430 0.283 0.052 0.173 
11 0.329 0.427 0.298 0.056 0.177 
12 0.337 0.320 0.311 0.060 0.179 
13 0.340 0.326 0.311 0.076 0.181 
14 0.346 0.340 0.296 0.117 0.180 
15 0.350 0.340 0.346 0.284 0.284 
16 0.351 0.337 0.369 0.283 0.283 
17 0.355 0.321 0.361 0.292 0.292 
18 0.359 0.344 0.353 0.305 0.305 
19 0.391 0.396 0.388 0.330 0.330 
20 0.403 0.387 0.326 0.285 0.285 
21 0.416 0.382 0.347 0.239 0.239 
22 0.428 0.374 0.375 0.216 0.216 

 
4. Discussion 

4.1 Significance of OCT images for cap thickness 
Imaging resolution has been a major limitation for vulnerable plaque research (and other areas in 
a broader sense) since the introduction of medical imaging. With image resolutions at 150 μm 
(IVUS) – 300 μm (MRI) or even worse, and plaque vessel wall thickness changes were normally 
under 200 μm, and “vulnerable plaque” cap thickness threshold value defined as 65 μm, many 
published results were educated guesses by segmentation software. Possessing the capability of 
detecting thin fibrous cap, OCT is able to provide more accurate cap thickness information to 
promote both the morphological and mechanical analyses in vulnerable plaque research. 
 
4.2 Prediction for cap thickness 
Using manual segmentation as standard, IVUS50 and IVUS180 would underestimate the real cap 
thickness. Particularly, IVUS50 demonstrated an overall worse ability in estimating the cap 
thickness. Regarding to some particular thickness values, IVUS180 provided relatively accurate 
cap thickness measurement when the cap thickness is about 180 μm. While IVUS50 and IVUS180 
showed no ability in capturing reasonable cap thickness.  
 



 
 

 
 

Among the different segmentation methods, predictions from LS-SVM (M1 and M2) showed 
higher agreements with manual segmentation in measuring mean cap thickness, comparing to 
IVUS50 and IVUS180. The relative error between M1/M2 and manual segmentation is less than 
17.2% for mean cap thickness, and less than 26.4%, if we look at the minimum cap thickness. 
 
4.3 Limitations 
One major limitation of this study is lack of histology data as the golden standard. Manual 
segmentation results based on IVUS and OCT images were considered as the alternative to the 
golden standard. Another limitation is the small sample size of OCT image studied. Large-scale 
studies with more OCT image are needed to validate and improve the significance of prediction 
method. 
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