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Abstract 

Linear triangular elements with 3 nodes (Tr3) were the earliest, simplest and most widely 
used in finite element (FE) developed for solving mechanics and other physics problems. The 
most important advantages of the Tr3 elements are the simplicity, ease in generation, and 
excellent adaptation to any complicated geometry with straight boundaries. However, it 
cannot model well the geometries with curved boundaries, which is known as one of the 
major drawbacks. In this paper, a four-noded triangular (Tr4) element with one curved edge is 
first used to model the curved boundaries. Two types of shape functions of Tr4 elements have 
been presented, which can be applied to FEM models based on the isoparametric formulation. 
FE meshes can be created with mixed linear Tr3 and the proposed Tr4 (Tr3-4) elements, with 
Tr3 elements for interior and Tr4 elements for the curved boundaries. Compared to the pure 
FEM-Tr3, the FEM-Tr3-4 can significantly improve the accuracy of the solutions on the 
curved boundaries because of accurate approximation of the curved boundaries. Several solid 
mechanics problems are conducted, which validates the effectiveness of FEM models using 
mixed Tr3-4 meshes. 

Keyword: Finite element method; Curved boundaries; Four-noded triangular element; 
Gaussian integration 

 

1 Introduction 

The earliest version of Finite Element Method (FEM) was proposed by Courant [1] in 1943. 
Since then the FEM has been studied intensively and it is now well developed [2]. It is 
employed to analyze various engineering systems, such as solid mechanics [3][4], fluid 
dynamics [5], heat transfer [6][7] and electromagnetics [8] and so on. The FEM has become a 
powerful and versatile numerical technique to effectively find approximate solutions to 
practical engineering problems. The general procedure using FEM to solve problems [9]-[10] 
includes: domain discretization, shape function construction, strain evaluation, 
element-stiffness-matrix computation, global-matrix assembly, displacement computation, 
and strain or stress retrieval. In domain discretization, the three-noded linear triangular (Tr3) 
element is the simplest and most popular element for 2D problems. Some typical triangular 
elements are shown in Fig. 1a. The triangular elements has a very attractive feature: problem 
domain with complicated geometries boundaries can be automatically discretized using Tr3 
elements, which is essential for automation in modeling and simulation and for adaptive 
analysis. There are lots of triangular mesh generation algorithms readily available, such as the 

mailto:woyuejunhong@163.com


 

 

 

Delaunay triangulation algorithm [11][12] proposed by Boris Delaunay, the advancing front 
technique (AFT) [13][14] developed from the iterative algorithm by Tracy. Owing to its 
simplicity and ease in generation for solving engineering problems, the Tr3 elements are 
currently most widely used in practice. However, the accuracy of the FEM using the linear Tr3 
elements is poor, especially in stress solutions on the curved boundary, because the stress or 
strain in the triangular elements is constant. 

        
(a)             (b)                 (c)            (d) 

Fig. 1 Traditional finite elements for two dimension: (a) three-noded triangular; (b) 
four-noded quadrilateral elements; (c) six-noded triangular element with straight; (d) 

six-noded triangular element curved edges. 

To improve stress accuracy, four-noded quadrilateral (Q4) element shown in Fig. 1b are 
proposed. It is well known that FEM using the Q4 element mesh (FEM-Q4) can obtain more 
accurate stress solutions than FEM using the linear Tr3 element mesh (FEM-Tr3) with the 
same node. However, the Q4 element mesh cannot generate a good quality mesh 
automatically for arbitrarily irregular problem domains, which is its biggest shortcoming. 
Except the Q4 elements, the higher order element [15]-[17] can also be used for better 
approximation of the curved boundaries [18][19]. For example, the six-noded isoparametric 
triangular elements shown in Fig. 1c,d can be automatically generated for complicated 
geometries and model the curved boundaries. However, the higher order elements are more 
complicated, and can produce less well-conditioned stiffness matrix with much higher 
condition numbers. This has been observed clearly from the significantly over-estimated 
eigenvalues of higher modes. Therefore, in engineering practices, linear elements are often 
preferred. For the problems with curved boundaries, however, linear elements cannot 
stimulate well the geometry of the curved boundaries, because the Tr3 element edges are 
straight lines deviating from the curved boundaries. In this paper, we presents a novel Tr4 
elements with an additional node on the curved edge. In a FEM model with curved edges, we 
use linear Tr3 elements for the most interior part of the problem domain, and Tr4 elements on 
the curved boundaries. Such a mixed mesh ensures the simplicity and effectiveness for solving 
problems with curved boundaries.  

Quadratic Linear

Transition

 
Fig. 2 A transition element with four nodes connecting a linear triangular element and a 

quadratic triangular element to ensure mesh compatibility. 

Tr4 elements are first proposed as a transition element (shown in Fig. 2) to connect quadratic 
and linear elements to ensure the compatibility of meshes [10]. In our work, Tr4 elements are 
applied to FEM models for improving the accuracy of the solutions on the curved boundaries. 
This effectively enables the use of the simplest Tr3 elements for problems with curved 
boundaries by attaching a layer of Tr4 elements on the curved boundary. We firstly introduce 
two types of shape functions of the Tr4 element for FEM models. The compatible strain 
matrices and the element stiffness matrices are then evaluated using the coordinate mapping 
process and the Gaussian integration [20]-[23] for FEM using Tr4 elements. The stain or stress 



 

 

 

solutions on Tr4 elements are recovered by extrapolation way. Finally, the effectiveness of 
FEM models using Tr3-4 meshes (FEM-Tr3-4) is validated through intensive solid mechanics 
examples, where Tr3 and Tr4 elements are both used in a mixed fashion. Through these 
numerical experiments, significant improvements are found on stress solutions on the curved 
boundaries for the problem domain with curved boundaries for FEM-Tr3-4 models. 

2 The proposed idea: a Tr4 element with one curved edge 

To enable the Tr3 element for curved boundary, an additional node is added on the middle of 
one edge, which results in a Tr4 element, as shown in Fig. 3. Through an isoparametric 
formulation, the edge with 3 nodes can now be curved to fit the curved boundaries. This can 
overcome the poor stress accuracy caused by inaccurate approximation on the curved 
boundary. Based on a Tr3 mesh (that can be automatically generated), the Tr4 elements can 
be created by adding simply a middle-edge node on the curved edge. 

 
(a)                    (b) 

Fig. 3 Tr4 elements: (a) four-noded triangular element with all straight edges; (b) four-noded 
triangular element with one curved edge. 

2.1 Tr3-4 meshes 

There are a few existing works on Tr4 elements are available for the purpose of mesh 
transition between linear and quadratic elements. In this paper, we consider several possible 
situations, where Tr4 elements are can be used on the basis of the linear Tr3 element meshes. 
Fig. 4 shows three meshes that contain Tr4 elements: 1) Tr4 elements with additional nodes 
on the longer edge, as shown in Fig. 4a; 2) a mesh with mixed Tr3 and Tr4 elements (Fig. 4b), 
where the additional nodes is added on each boundary (straight) edge; 3) a mesh with mixed 
Tr3 and Tr4 elements Fig. 4c,d , where a middle node is added on each curved edge. For 
convenience in discussion later, the FEM only using all Tr4 elements is called FEM-Tr4. The 
FEM using a mixed Tr3-4 elements mesh is denoted as FEM-Tr3-4. 

      
(a)                        (b) 

       
(c)                        (d) 



 

 

 

Fig. 4 Possible uses of mixed Tr3-4 meshes: (a) Tr4 element mesh with Tr4 elements only; (b) 
Tr3-4 element mesh in which Tr4 elements are used for boundary elements and Tr3 elements 
are used for the interior elements; (c) Tr3-4 element mesh in which Tr4 elements are used for 
the inner curved boundary and the other part still use Tr3 elements; (d) Tr3-4 element mesh in 

which T4 elements are used for the outer curved boundary only. 

2.2 Shape functions construction 

Two types of shape functions of Tr4 elements for FEM models based on isoparametric 
formulation are constructed. Our formulation for these shape functions will be based on the 
Cartesian natural coordinates (ξ, η), using the following assumptions:  

Case I: Assuming the displacements change linearly in the radial direction as shown in Fig. 
5a: 

1) In the radial direction originated from node 3, the displacement varies linearly;  

2) In the η -direction along with nodes 1, 4, and 2, the displacement varies quadratically. 

Case II: the following assumptions are used:  

1) In the η -direction the displacement varies linearly, as shown in Fig. 5b;  

2) In the ξ -direction along with nodes 1, 4, and 2, the displacement varies quadratically. 
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(a)                                 (b) 

Fig. 5 Displacement variation in a Tr4 element defined in the Cartesian natural coordinates: (a) 
linear along the radial direction (dash line); (b) linear along the vertical direction (dash line). 

Consider first Case I. The shape functions of Tr4 element can be constructed using the 
following two methods:  

Method 1: Direct construction method 

First, we perform simple interpolation for a displacement component u. Consider any point P 
in the Tr4 element, through which point, a curved segment, α β γ− −  being ‘parallel’ to the 
edge 1-4-2, can be drawn, as shown in Fig. 6a. The displacement component at the point is 
then evaluated using interpolation: 

 l l lu u u uα α β β γ γφ φ φ= + +      (1) 

where , ,l l l
α β γφ φ φ  are, respectively, the shape functions of point , ,α β γ , and can be written as 

 ( ) ( )( ) ( )1 / 2, 1 1 , 1 / 2l l l
α β γφ ζ ζ φ ζ ζ φ ζ ζ= − = − + = +      (2) 

in which [ ]2 , 1,1l Lζ ζ= ∈ − , L  is the (arc) length of the curved segment α γ− , and l  



 

 

 

represents local curve-linear coordinate value (with the original point β ) at point P on the 
segment α β γ− −  (see Fig. 6b) 
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(a)                              (b) 

Fig. 6 (a) Interpolation over Tr4 element with one curved edge. (b) Local curve-linear 
coordinate. 

and pl l lα α β− −= − ,  plα−  and lα β−  represent, respectively, the (arc) lengths of the curved 
segment pα −  and the curved segment α β− . 

Now, the displacement in the Tr4 element can be evaluated using the following formulation 

 ( )( ) ( )( ) ( )( )
( )

3 1 3 4 3 2

1 2 3 4

1 1 2 2 3 3 4 4

1 1 1

1
,

l l l

l l l

l l l

u u u u

u u u u u u

u u u u
N u N u N u N u

α α β β γ γ

α β l

α γ β

φ φ φ

κ κ φ κ κ φ κ κ φ

κφ κφ κ κφ

= + +

= − + + − + + − +

= + + − +

= + + +

     (3) 

where the displacements at α , β  and γ  are calculated using: 

( ) ( ) ( )3 1 3 4 3 21 , 1 , 1u u uu u u u u uα β γκ κ κ κ κ κ= − + = − + = − + , 

in which using the fact that 

 3 3 1 3 3 4 3 3 2l l l l l lα β γ κ− − − − − −= = = ,     (4) 

and i jl −  represents the length of segment i j− . 

Therefore, the general form of shape functions ( )1,2,3,4iN i =  are expressed as 

 

( ) ( )
( ) ( )
( )
( ) ( )( )

1

2

3

4

, 1/ 2 1

, 1/ 2 1
,

, 1

, 1 1

N

N

N

N

ζ κ κζ ζ

ζ κ κζ ζ

ζ κ κ

ζ κ κ ζ ζ

= −


= +


= −
 = − +

     (5) 

where the parameter [ ]0,1κ ∈ , [ ]1,1ζ ∈ − . 

Finally, using Eq. (5) and the following relations: 

 ( )1 , 2 1 1κ η ξ ξ η= − = − − .     (6) 

we obtain the shape functions of the Tr4 element in the  natural coordinate system: 



 

 

 

 

( )( ) ( )( ) ( )
( )( ) ( ) ( )

( )
( )( ) ( ) ( )

1

2

3

2
4

1 1 / 4 1 2 1 / 1 ,

1 1 / 4 2 1 / 1 ,

1 / 2 ,

1 1 / 2 4 1 / 1 .

N r r s

N r r s

N s

N r s

ξ η ξ η η

ξ ξ η η

η

ξ ξ η η

= − − − = − − − − −

= + − = + − −

= + =

= − − = − − −

     (7) 

Method 2: Indirect construction method 
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(a)                       (b) 
Fig. 7 Collapsing a five-noded quadrilateral element into a four-noded triangular element; (a) 

Five-noded quadrilateral element; (b) Four-noded triangular element. 

The shape functions of five-noded quadrilateral element shown in Fig. 7a are found in Ref. 
[10]: 

 

( )( )
( )( )
( )( )
( )( )
( )( )

1 5

2 5

3

4

2
5

1/ 4 1 1 1/ 2 ,

1/ 4 1 1 1/ 2 ,

1/ 4 1 1 ,

1/ 4 1 1 ,

1/ 2 1 1 .

r s

r s

r s

r s

r s

φ φ

φ φ

φ

φ

φ

= − − −

= + − −

= + +

= − +

= − −

     (8) 

The four-noded triangular element can be obtained by collapsing the side 3-4 of the 
five-noded element as shown in Fig. 7. The shape functions of Tr4 element shown in Fig. 7b 
are obtained by simply amending shape functions in Eq. (1): 

 

( )( )
( )( )
( )( )
( )( )

*
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*
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*
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* 2
5

1/ 4 1 1

1/ 4 1 1

1/ 2 1 1

1/ 2 1 1

r r s

r r s

r s

r s

φ

φ

φ

φ

= − −

= + −

= + +

= − −

     (9) 

Mapping the Tr4 element in Fig. 7b into the standard Tr4 element in Fig. 5 using the 
following relationship: 

 ( )2 / 1 1, 2 1r sξ η η= − − = −      (10) 

which gives the same shape functions given in Eq.(7) for the Tr4 element. 

Under the assumptions of case II, shape functions of Tr4 element shown in Fig. 5 are 
constructed as follows: 
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Fig. 8 Standard Tr4 element in natural coordinate system for shape function construction. 

Fig. 8 shows a standard Tr4 element in natural coordinates. The equations of lines 
1 2 3 4 5 6, , , , ,l l l l l l  and 7l  shown in Fig. 8 are : 

 
1 2 3

4 5

6 7

: 0, : 1/ 2, : 1,
: 0, : 1,
:1/ 2 0, :1 0.

l l l
l l
l l

ξ ξ ξ
η η

ξ η ξ η

= = =
= =

− − = − − =
     (11) 

Based on Delta function properties, Shape functions of the Tr4 elements, satisfies that 

 
2 7

1 ,
0

l l
N = , 

1 6
2 ,

0
l l

N = , 
4

3 0
l

N = , 
1 7

4 ,
0

l l
N = ,     (12) 

and 

 ( ) ( ) ( ) ( )1 2 3 40,0 1,0 0,1 1/2,0
1, 1, 1, 1.N N N N= = = =      (13) 

It is from Eq.(11) that the shape functions can be assumed as: 

 

( )( )
( )

( )

1 1

2 2

3 3

4 4

1/ 2 1 ,

1/ 2 ,
,
1 .

N a

N a
N a
N a

ξ ξ η

ξ ξ η
η
ξ ξ η

= − − −

= − −

=

= − −

     (14) 

and from Eq.(13), we have 

 1 2 3 42, 2, 1, 4.a a a a= − = − = =      (15) 

Therefore, we have 

 

( )( )
( )

( )

1

2

3

4

1 1 2 ,

1 2 2 ,
,

4 1 .

N

N
N
N

ξ η ξ

ξ ξ η
η
ξ ξ η

= − − −

= − − −

=

= − −

     (16) 

It is note that the shape functions of Tr4 element given in Eq.(16) are consistent with the 
report in [10], in which the shape functions of Tr4 element are constructed using other way. 

It is clear that shape functions ( )1,2,3,4iN i =  satisfy: (1) Linear independence; (2) Delta 
function properties; (3) Partitions of unity property. It can be implemented in the standard 
FEM formulations. For convenience in discussion later, the FEM-Tr3-4 model using the shape 



 

 

 

functions in case I and case II are, respectively, denoted as FEM-Tr3-4-N1 and 
FEM-Tr3-4-N2 models. Similarly, we have the FEM-Tr4-N1 and FEM-Tr4-N2 models for 
FEM-Tr4 model. 

2.3 Strain matrix evaluation 

The compatible strain matrix can be evaluated based on isoparametric mapping formulation 
for FEM models. Fig. 9 shows that a coordinate mapping from physical coordinates to natural 
coordinates, which is also indispensable for evaluating the strain matrix. 
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(a)                 (b) 
Fig. 9 Coordinate mapping from physical coordinate system to natural coordinate system; (a). 

A Tr4 element in the physical coordinate system; (b). A standard Tr4 element in the natural 
coordinate system. 

The isoparametric mapping formulation between two coordinate systems can be expressed as 

 
4

1
( , )i i

i
x N xξ η

=

=∑ , 
4

1
( , )i i

i
y N yξ η

=

=∑ .     (17) 

where ix  and iy  represent coordinates of the ith node.  

Hence, the strain matrix e
iB  for the Tr4 element can be evaluated using the formula 

 0
0

T

e i i
i

i i

N x N y
N y N x

 ∂ ∂ ∂ ∂
= =  ∂ ∂ ∂ ∂ 

B LN .     (18) 

where the partial derivatives ( ), 1, 2,3, 4i iN x N y i∂ ∂ ∂ ∂ =  can be evaluated using 

 
1

1i i i

i i i

x yN x N N
x yN y N N

ξ ξ ξ ξ
η η η η

−

−  ∂ ∂ ∂ ∂    ∂ ∂ ∂ ∂ ∂ ∂ 
= =      ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂      

J .     (19) 

where J  is a Jacobian matrix between the two coordinate systems. 

2.4 linear system of equations 

For general FEM models, the linear system of equations has the form: 

 =Kd f .     (20) 

where K  is the global system stiffness matrix consisting of element stiffness matrices. The 
element stiffness matrix of the Tr4 elements can be computed using Gaussian integration: 

 ( ) ( )( )1 1

0 0 ( , )1
det det

G

e
j j

nT TeT e e e e e
e i i i i j i iA

j
dA d d w

ξ

ξ η
η ξ

−

=

= = =∑∫ ∫ ∫k B cB B cB J B cB J .     (21) 



 

 

 

where det J  is determinant of the Jacobian matrix J ; ( , )j jξ η  and jw , respectively, 

represent the coordinates and weights of the jth Gauss-point; Gn  represents the number of 
Gauss-points. Table 1 lists the number, locations, and corresponding weights of Gauss-points 
for satisfying different accuracy order of the integrand. For example, three Gauss-points are at 
least needed for quadratic triangular elements [18], and two Gauss-points are not sufficient to 
two order of accuracy. 

Table 1. The coordinates of Gauss-points and corresponding weights for the standard Tr3 
element. 

Number of Gauss-points ( ),ξ η  Weights Order of accuracy 
1 (1/3,1/3) 1/2 1 

3 
(1/6,1/6) 1/6 

2 (4/6,1/6) 1/6 
(1/6,4/6) 1/6 

7 

0.1012865073235 0.1012865073235 

5 

0.7974269853531 0.1012865073235 
0.1012865073235 0.7974269853531 
0.4701420641051 0.0597158717898 
0.4701420641051 0.4701420641051 
0.0597158717898 0.4701420641051 
0.3333333333333 0.3333333333333 

It is worthwhile to note that the locations of Gauss-points are different for case I and case II in 
Section 2.2. For case I, the locations and corresponding weights of Gauss-points on the Tr4 
elements are listed in Table 2. For case II, the locations and corresponding weights of 
Gauss-points on the Tr4 elements are listed in Table 1, which is shown in Fig. 10. The 
effectiveness of Gaussian integration on the locations of Gauss-points listed in Table 1 and 
Table 2 has been validated on standard Tr4 element. 
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(a)                          (b) 
Fig. 10. The locations of Gauss-points for the standard Tr4 element: 

(a) two Gauss-points; (b) three Gauss-points. 

Table 2. The coordinates of Gauss-points and corresponding weights for the standard Tr4 
element. 

Number of Gauss Points ( ),ξ η  weights 

2 
( )1/ 3 3 / 9,1/ 3−  1/6 

( )1/ 3 3 / 9,1/ 3+  1/6 

3 

( )1/ 3 1/15,1/ 3−  5/18 

( )1/ 3,1/ 3  8/18 

( )1/ 3 1/15,1/ 3+  5/18 



 

 

 

 

2.5 Retrieval of strains for the Tr4 elements 

For the Tr3 elements, the nodal strain, ( )kxε , at the node k  is evaluated using the following 
formula, which is an area-weighted averaged strain of elements connecting to the node k  
[24],  

 ( )
1

1
k
en

e
k i ine

ik

A
A =

= ∑x ε ε .     (22) 

where k
en  and ne

kA , respectively, represent the number and total area of elements connecting 
to the node k . iε  and e

iA , respectively, represent the strain and area of the ith element. 

Note that the strain of the Tr3 element is a constant, while the strain of the Tr4 element is not 
a constant. Hence nodal strain ( )kxε  of the Tr4 elements is calculated using the following 
manner: (1) The nodal strains are evaluated at the sample points in the Tr4 elements. (2) The 
strains of element-nodes can be obtained using the strains of these sample points in the 
element by the extrapolation technique. (3) Similarly to Tr3 elements, the extrapolated strains 
are generally different from those at the same nodes from the adjacent elements, because of 
the discontinuity of the strains in the FEM-Tr3-4. Hence, the nodal strains are calculated using 
these extrapolated strains through the area-weighted averaged schedule.  

The further elaboration of the steps (1) and (3) does not require, since they can be easily 
implemented. However, it is necessary to elaborate the extrapolation process in the step (2). 
Consider a Tr4 element for Case I, and a set of sample points including Gauss-points on a 
standard Tr4 element is chosen to evaluate the strains at nodes of the element. These sample 
points are marked in the same order as the node-numbering of element as #1g , # 2g , #3g  
and # 4g  in Fig. 11a. In the coordinate system Oξη , coordinates of element-nodes and these 
sample points are listed in Table 3.  
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  (a)                             (b) 
Fig. 11 Extrapolation from sample points to element-nodes: (a). the natural coordinate system

Oξη ; (b) the coordinate system g g gO ξ η  for the “sample element”. 

Fig. 11b shows a “standard element” consisting of four sample points. The relationship 
between the natural coordinate system Oξη  and g g gO ξ η  can be written as 

 ( 15 / 2) 15 / 6 1/ 2gξ ξ= − + , 3 1gη η= − .     (23) 

  In the coordinate system g g gO ξ η , coordinates of element-nodes and these sample points are 
listed in  



 

 

 

Table 4, which are obtained by using the relationship in Eq.(23). 

Table 3. Coordinates of element-nodes and Gauss-points in the natural coordinate system 
Oξη  for a Tr4 element of Case I. 

element-nodes #1 #2 #3 #4     
Gauss-points     #1g  #2g  #3g  #4g  

ξ  0 1 0 0.5 
1 1
3 15
−  1 1

3 15
+  1 1

3 15
−  1/3 

η  0 0 1 0 1/3 1/3 2/3 1/3 
 

Table 4. Coordinates of element-nodes and Gauss-points in the natural coordinate system 
g g gO ξ η  for a Tr4 element of Case I. 

element-nodes #1 #2 #3 #4     
Gauss-points     #1g  #2g  #3g  #4g  

gξ  1 15
2 6
−  1 15

2 3
+  1 15

2 6
−  1 15

2 12
+  0 1 0 1/2 

gη  -1 -1 2 -1 0 0 1 0 

For a Tr4 element, the strains at the sample points, jε  ( 1 ,..., 4g gj = ), can be computed. Using 
strains of sample points and the nodal shape functions in the coordinate system g g gO ξ η , 
strains ε  at nodes of the Tr4 element can be obtained:  

 ( ),g g
g gξ η = N ε ε ,     (24) 

where 
( )1 2 3 41 2 3 4 ,

,g g g g g g

Tg g g g
g g N N N N

ξ η
   = =    N    ε ε ε ε ε , and 

 

( ) ( )
( )
( )
( )

2
1

2
2

3

2
4

, 2( ) / (1 ) 3 1

, 2( ) / (1 )

,

, 4 4( ) / (1 )

g g g g g g g

g g g g g g

g g g g

g g g g g g

N

N

N

N

ξ η ξ η ξ η

ξ η ξ η ξ

ξ η η

ξ η ξ ξ η

 = − − + −

 = − −


=


= − −

.     (25) 

Let 1/ 2 15 / 6gξ = − , 1gη = −  in Eq.(26), and we can obtain the strain 1ε  at the node 1. 
Similarly, we can obtain the strain at nodes 2, 3 and 4, and have: 

 

1 1

2 2

3 3

4 4

7 15 1 2 151
6 3 6 3 3

29 2 17 11 2 1515 1
12 3 12 6 3
13 5 15 11 15 14 4 152
3 6 6 2 3 3

41 15 7 31 151
48 6 48 24 6

g

g

g

g

 
+ − − 

 
    

− − − +     
    =
    
 − + − + −   
     

 
− − − + 

 









εε
εε
εε
εε

.     (26) 

Similarly, when a Tr4 element for Case II is considered, we have the relationship between the 
natural coordinate system Oξη  and g g gO ξ η can be written as 



 

 

 

 2 1/ 3, 2 1/ 3g gξ ξ η η= − = − ,     (27) 

Using above relationship, Table 5 and Table 6 can be obtained, and we have the extrapolated 
matrix: 
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Table 5. Coordinates of element-nodes and Gauss-points in the natural coordinate system 
Oξη  for a Tr4 element of Case II. 

element-nodes #1 #2 #3 #4     
Gauss-points     #1g  #2g  #3g  #4g  

ξ  0 1 0 0.5 1/6 4/6 1/6 5/12 
η  0 0 1 0 1/6 1/6 4/6 1/6 

Table 6. Coordinates of element-nodes and Gauss-points in the natural coordinate system 
g g gO ξ η  for a Tr4 element of Case II 

element-nodes #1 #2 #3 #4     
Gauss-points     #1g  #2g  #3g  #4g  

gξ  -1/3 5/3 -1/3 2/3 0 1 0 1/2 
gη  -1/3 -1/3 5/3 -1/3 0 0 1 0 

Using the above way, the recovery strains and stresses for FEM-Tr3-4 models can be obtained, 
and they possess high accuracy, compared to those obtained using the FEM-Tr3 model. 

3 Numerical examples and discussions 

In this section, to validate the effectiveness of the FEM-Tr3-4 or FEM-Tr4 models, three solid 
mechanics problems are conducted using different numerical models including the standard 
FEM-Tr3 and the well-known FEM-Q4 models. Relative errors in the displacement and nodal 
stress defined in the following formulas are used to analyze the results. 
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where e
iu  and e

is , respectively, represent the exact solutions in the displacement and stress of 

the ith node; num
iu  and num

is , respectively, represent numerical solutions in the displacement 
and stress of the ith node.  

3.1 A Rectangular Cantilever loaded at the end 

Then, we consider a rectangular cantilever, which is a plane stress problem. Fig. 12 shows a 
cantilever with height D  and length L , and a parabolic traction is imposed on its free end. 
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Fig. 12 A rectangular cantilever loaded at the free end. 

The analytical solutions for the displacement and stresses are found in [25]: 
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     (30) 

where I  represents the moment of inertia and can be evaluated using 3 12I D= . E and ν , 
respectively, represent Young modulus and Poisson ratio of the problem.  

In the calculation, the above parameters are taken as 12mD = , 48mL = , 1000 NP = , 
7 23.0 10 N/mE = ×  and 0.3ν = . Boundary conditions in the left end and right end of the 

cantilever are imposed using Eq.(30).  

To validate the effectiveness of FEM-Tr3-4-N1 and FEM-Tr3-4-N2 models, we consider the 
effect of the boundary refinement on the results for the rectangular cantilever. The domain of 
the cantilever is discretized using linear Tr3 elements for inner elements and Tr4 elements for 
boundary elements, as shown in Fig. 13.  

 

Fig. 13 Mesh using Tr3 elements and Tr4 elements for the rectangular cantilever. 

Table 7 gives the relative errors in displacement on the middle points of upper boundary edges 
using different methods and mesh sizes. The mesh size S is defined as 

 x yS n n= ×      (31) 

where xn  and yn  ,respectively, represent the number of mesh in x direction and y direction. 
The results show that FEM-Tr3-4-N1 and FEM-Tr3-4-N2 models only slightly improve the 
accuracy in displacement on the boundaries, compared to FEM-Tr3 model.  
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Table 7. Relative errors in displacement component u on the middle nodes of upper boundary 
edges. 

      Method 
Mesh size 16×4 24×6 32×8 40×10 48×12 

FEM-Tr3 1.746e-01 8.698e-02 5.118e-02 3.349e-02 2.355e-02 
FEM-Tr3-4-N1 1.734e-01 8.672e-02 5.113e-02 3.342e-02 2.350e-02 
FEM-Tr3-4-N2 1.712e-01 8.590e-02 5.073e-02 3.327e-02 2.344e-02 

FEM-Q4 3.050e-02 1.381e-02 7.820e-03 5.021e-03 3.493e-03 

Consider middle-points of closest to the point A and point B shown in Fig. 12 on boundary 
edges, which are marked as A' and B' respectively. It is from Eq. (30) that the normal stress xxσ  
of point A and the shear stress xyτ  of point B is maximum for the rectangular cantilever 
problem. Fig. 14a and Fig. 14b show, respectively, the relative errors in normal stress xxσ  of 
the point A' and in shear stress xyτ  of point B' against mesh sizes using different methods. It is 
clearly observed that FEM-Tr3-4 models stand out in the normal and shear stresses, comparing 
with FEM-Tr3 models; The results of FEM-Tr3-4-N2 model are the most excellent in the 
terms of the shear stress solutions, comparing with the FEM-Tr3 and FEM-Q4 models. 

  

(a)                                           (b) 
Fig. 14 Relative errors in stresses against mesh sizes using different methods for the 

rectangular cantilever: (a) normal stress of Point A' (b) shear stress of Point B'. 

3.2 Infinite plate with a circular hole 

Next, we consider a square plate with the side length D and a circular hole with a radius a in 
the center of plate, which is a plane strain problem. The unidirectional tensile load σ  is 
imposed on the right and left boundary along the x-direction, and owing to its symmetry, only 
quarter of the square plate is modeled, as shown in Fig. 15. 

The analytical solution for the displacements ,x yu u  and stresses , ,xx yy xyσ σ τ  in the polar 
coordinates and can be found in [25],  
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where r and θ  represent the polar coordinate values; The parameters µ  and κ  are 
evaluated using 

 ( )( )/ 2 1Eµ ν= + , 3 4κ ν= − .     (33) 
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Fig. 15 Infinite plate with a circular hole subjected to unidirectional tension and its quarter 
model with symmetric conditions imposed on the left and bottom edges. 

In the calculation, the above parameters are taken as 10mD = , 1ma = , 1N / mσ =
3 21.0 10 N/mE = ×  and 0.3ν = . The traction boundary conditions and symmetric condition, 

respectively, are imposed on the right edges ( 5x = ) and the left-bottom edges ( 0x =  and 
0y = ). The inner edges ( 1r = ) and the top edges ( 5y = ) are free of traction. The domain of 

the square plate is discretized using Tr4 elements for the curved boundary and linear Tr3 
elements for other parts, which is shown in Fig. 16.  

Table 8. Relative errors in displacement component u on the middle nodes of all curved edges. 
      Method 
Mesh size 8×8 12×12 16×16 20×20 24×24 

FEM-Tr3 9.304e-02 4.444e-02 2.511e-02 1.601e-02 1.106e-02 
FEM-Tr3-4-N1 8.560e-02 4.127e-02 2.362e-02 1.518e-02 1.055e-02 
FEM-Tr3-4-N2 8.167e-02 3.991e-02 2.309e-02 1.494e-02 1.043e-02 

FEM-Q4 3.796e-02 1.525e-02 7.933e-03 4.828e-03 3.246e-03 

Table 8 gives the relative errors in displacement with mesh sizes using different numerical 
methods on the middle points of all curved edges. It is observed that FEM-Tr3-4-N1 and 
FEM-Tr3-4-N2 models can slightly improve the accuracy in displacement, compared to 



 

 

 

FEM-Tr3 model. 

 

Fig. 16 Mesh with Tr3 elements and Tr4 elements for infinite plate with a circular hole. 

According to the analytical solution in Eq.(32), the normal stress is maximum at the point A, 
and the shear stress is maximum at the point B. Fig. 17a shows relative errors in normal 
stresses xxσ  of middle-point A' (closest to Point A) on the boundary edges with mesh sizes 
using different methods. We find that the results of FEM-Tr3-4-N2 model are the most 
excellent in the terms of the normal stress xxσ  as the mesh size is greater to 144, comparing 
with the FEM-Tr3 and FEM-Q4 models. 

 
(a)                                        (b) 

Fig. 17 Relative errors in stresses against Mesh sizes using different methods for infinite plate 
with a circular hole: (a) normal stress of point A'; (b) shear stress of Point B'. 

Fig. 17b shows relative errors in shear stresses xyτ  of middle-point B' (closest to point B) with 
mesh sizes using different methods. we again find that FEM-Tr3-4 models stand out in the 
normal and shear stresses, comparing with FEM-Tr3 models, which also confirms that Tr4 
elements effectively improve the accuracy of results, especially in stresses on the curved 
boundaries. 

3.3 Axisymmetric ring subjected to internal pressure 

Consider a 2D axisymmetric ring with inner radius a, outer radius b and subjected to internal 
pressure ap , as shown in Fig. 18a. This problem is assumed to have a unit thickness so that 
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the plane stress condition is valid. The analytical solution of displacement and stresses of this 
problem are available in polar coordinate system [25]: 
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,     (34) 

where ( ),r θ  are the polar coordinates and θ  is measured counterclockwise from the 
positive x-axis. 

x

y

O
a

b

θ
r          

(a)                                      (b) 
Fig. 18 (a) Axisymmetric ring subjected to inner pressure. (b) Domain discretization of the 

quarter ring. 

Due to its symmetry, only one-fourth of the ring is modeled. Fig. 18b gives the discretization 
of the domain using Tr3 and Tr4 elements. The related parameters are taken as 

3 21.0 10 N / mE = × , 0.3ν = , 1ma = , 2mb = , 100N / map = . Symmetric conditions are 
imposed on the bottom and left edges, and the outer boundary of the ring is traction free. 

 
(a)                         (b) 

Fig. 19 Relative errors in displacement components u and v against Mesh sizes on the inner 
curved boundary using different methods. 

Fig. 19 presents the relative errors in displacement against mesh sizes using different 
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numerical methods on the middle points of inner curved edges, from which we observed 
again that FEM-Tr3-4 (FEM-Tr3-4-N1 and FEM-Tr3-4-N2) models improve slightly the 
accuracy in displacement component u, and improve distinctly the accuracy in displacement 
component v, compared to FEM-Tr3 model. 

It is from Eq.(34) that maximum normal stresses (
rσ and 

θσ  ) in polar coordinate are on the 
inner curved boundary of ring. Fig. 20 shows relative errors in normal stress on inner curved 
edges against mesh sizes using different methods. We again find that FEM-Tr3-4 models is the 
most excellent, comparing with FEM-Tr3 models, and the results of FEM-Tr3-4-N2 model are 
the most accuracy in all models. This example again confirms Tr4 elements effectively 
improve the accuracy of results in stresses on the curved boundaries. 

 
(a)                           (b) 

Fig. 20 Relative errors in normal stresses against Mesh sizes on the inner curved boundary 
using different methods 

3.4 A Rectangular Cantilever using Tr4 mesh 

The Tr4 elements can be also used in entire problem shown in Fig. 4a. Now, consider the 
same cantilever problem as Example 3.1. The domain of the cantilever is discretized only 
using Tr4 elements, as shown in Fig. 21. 

 

Fig. 21 The mesh using Tr4 elements for the rectangular cantilever. 

Fig. 22 is the numerical results of strain energies against mesh sizes using different methods, 
which indicates that the strain energy solutions of FEM-Tr4 models can stably converge to the 
analytical strain energy from below. It is also clearly seen that the energy results of 
FEM-Tr4-N1 and FEM-Tr4-N2 models are more accurate, compared to FEM-Tr3 model and 
even FEM-Q4 model. 
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Fig. 22 Strain energies against mesh sizes using different methods for the rectangular 
cantilever. 

Because the analytic solution of normal stress yyσ  in y direction is always zero, the relative 
errors in normal stress xxσ  and shear stress xyτ  are only considered, which are plotted in Fig. 
23 against mesh sizes using different methods. From Fig. 23, we find the relative errors in 
stress of FEM-Tr4 models are obviously better than those of FEM-Tr3 model, and slightly 
better than those of FEM-Q4 model which is well known for its high accuracy. The proposed 
FEM-Tr4-N2 model can produce the most accurate solution among those models using the 
same mesh. 

 

(a)                        (b) 
Fig. 23 Relative errors in stress against mesh sizes for the rectangular cantilever using 

different methods: (a) normal stress xxσ ; (b) shear stress xyτ . 

4 conclusion 

In order to using linear elements to approximate the curved boundaries of problem domain, 
we present a novel Tr4 element in the paper. . Based on two types of shape functions of the 
Tr4 element, we put forward to the FEM-Tr3-4-N1 and FEM-Tr3-4-N2 models. Comparing to 
the FEM-Tr3 model, the FEM-Tr3-4 models can obtain higher accuracy in stress solutions. 
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Especially the solution of FEM-Tr3-4-N2 model is more stable and high-accurate, which are 
even better than those obtained using the well-known FEM-Q4 model on the curved boundaries. 
Through intensive numerical examples, it is concluded that our novel Tr4 elements can model 
the curved boundaries efficiently and accurately. 
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