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Abstract 
A major requirement of arbitrary approximate computation is convergence to the exact 
solution. In view of the definition of error, problems with analytical closed from solutions 
generally need to be at hand, for numerical study of convergence, as well as verification and 
validation issues. In order to eliminate this necessity, the concepts of pseudo-error and 
pseudo-convergence are introduced in 2010. Towards better control of accuracy, it is herein 
explained that, if two solutions, obtained from two different methods, for one problem, 
converge to the exact solution with similar rates, and in intervals of proper convergence, and 
the errors of the first solution are more/less than the errors of the second solution, the same 
can be claimed about the two pseudo-errors, and vice versa. Extension to several 
computations is concluded and the implementation in practice is briefly discussed.  
Keywords: Convergence, Exact solution, Error, Pseudo-error, Rate of convergence, Proper 
convergence 

Introduction 
Convergence is the most important essentiality of arbitrary approximate computations [1, 2]. 
With the purpose to study convergence and its trend numerically and without the exact 
solutions, the concepts of pseudo-error and pseudo-convergence are introduced and later 
extended to non-geometric changes of the algorithmic parameters [3-5]. In brief, for an 
arbitrary approximate computation aU  defined in terms of the algorithmic parameter λ , by 
defining the pseudo-error D, as (q stands for the rate of convergence [1-5], the right subscript 
i implies the result of the computation when using iλ  as the value of the algorithmic 
parameter, and  represents an arbitrary norm [6]): 
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the equivalence addressed in Fig. 1 holds, i.e. either both the errors, E, and the pseudo-errors, 
D, or neither of them, converge properly. Proper convergence [7] is defined as the decrease of 
the errors in the log-log convergence plot as a straight line sloped q (q is defined just before  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  An existing equivalence between errors and pseudo-errors [4, 5] 
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Eq. (1)), and, considering U as the exact solution, the error, E, is defined as [8]: 

    UU −= aE      (2) 

In view of the academic need in an in-progress research, the main objective in this paper is to 
display that for two approximate computations for one problem converging properly [7] with 
identical rates, the computation with more/less error is associated with more/less pseudo-
error, and vice versa; see Fig. 2; extension to several computations and even beyond the 
proper convergence region is considered as the conclusion. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  A new equivalence between convergence and pseudo-convergence 

Theory 

In order to explain the validity of the equivalence addressed in Fig. 2, consider three arbitrary 
different points on each of the two convergence trends in the left plot in Fig. 2, and  address 
them such that  

    0321 >>> λλλ      (3) 

By addressing the two computations with  U  and U  , and addressing the information about 
the three points, with the right subscripts “1”, “2”, and “3, in view of the proper convergence 
assumption and from simple geometry,  
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from which, 
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and hence, 
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Consequently, 
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which can be simply extended to (with more points in the left plot in Fig. 2): 
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By considering different components of the solution separately, and taking into account that, 
for each component, the proper convergence occurs from one side [9], i.e. with values always 
more or always less than the exact value, Eq. (1) leads to  
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for arbitrary component of the solution. From Eqs. (8) and (9), we can conclude that 
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and since, according to the definition of pseudo-errors (see Eq. (1)), and with attention to [9], 
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from Eqs. (8), (10) and (11), we can conclude 
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Comparing Eqs. (8) and (12) leads to the fact that, when iE  is larger/smaller than iE , a 
similar relation exists between iD  and iD , and since this is for an arbitrary component of the 

solution, it can also be considered valid for the total solutions aU  and aU  in the regions of 
proper convergence, i.e. we have succeeded to arrive at the right plot in Fig. 2 from the left 
plot. 
 
In order to arrive at the left plot in Fig. 2 from the right plot, by considering n separate points 
in the right plot, we can arrive at 
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Again restricting the discussion to arbitrary specific component of the solution and 
considering the fact that properly converging solutions not affected by round off (as displayed 
in Fig. 2) converge to the exact solution from one side [9], from Eqs. (1) and (13), we can 
conclude  
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and since theoretically, when disregarding round-off 

    solution)exact  (theUUU aa == ∞∞      (15) 

from simple mathematics and Eq. (14), we will arrive at 
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leading to 
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or 
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E
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implying the completion of the proof for an arbitrary component of the solution and 
accordingly for the total solution in the proper convergence region. Thus, the proof is 
complete. As a direct consequence, when a problem can be solved approximately with several 
methods, and the computational methods provide similar rates of convergence and converge 
properly, the method with the i th size of error is also of the i th size of pseudo-error; see 
Fig. 3 for five methods; specifically the method displaying the least pseudo-error leads to the 
most accurate solution. Furthermore, from Eqs. (8), (12), (13), and (18), for any two of these 
computations, in the region of proper convergence, 
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Figure 3.  An extension of Fig. 2 
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And finally, since the basis of convergence plots and specifically the proper convergence 
regions is the Taylor series expansion [10] of approximate computations with respect to the 
algorithmic parameters [11], i.e.  

    OCCCUU ≠+++= +
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in view of the continuity of the Taylor series expansion addressed in Eq. (20) with respect to 
λ  [10], it is also reasonable to expect the validity of the claim implied in Eq. (19) and Fig. 3 
for values of the algorithmic parameter slightly larger than those corresponding to the proper 
convergence regions. 

An Example 

Since the previous section is carried out in a mostly rigorous manner, for the sake of brevity, 
only one example is presented here (and this example is also studied for other purposes in [12, 
13]). Consider the shear frame structural system defined in Fig. 4 and Table 1 ( gu&&  stands for 
the ground acceleration and tf Δ  implies the size by which gu&&  is digitized). Transient analysis 
of the structural behavior by direct time integration [14-17] is the approximate computation 
under consideration. The time integration methods are the Houbolt, the average acceleration 
Newmark, the C-H ( 8.0=∞ρ ), and the C-H ( 5.0=∞ρ ) methods [18-22], all providing 
second order convergence, i.e. 2=q  [14, 15, 23]. The peak lateral displacement of the top 
floor and the final floors shear forces are the target solutions. In the study of the convergence 
trend, the integration steps are the algorithmic parameters [11, 14, 15, 24, 25], and as 
conventional [17, 26, 27], the steps of direct time integration are halved sequentially, 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: Structural system under consideration: (a) Structural model, (b) Excitation 

 
Table 1: Some properties of the shear frame in Fig. 4(a) 

 
 
 
 
 
 
 
 
 

Storey Mass (Kg) Stiffness (N/m2) Damping (N/m/sec) 
1 1036E4 860E7 

0 

2 1034E4 840E7 
3 1032E4 820E7 
4 1030E4 700E7 
5 1028E4 680E7 
6 1026E4 660E7 
7 1024E4 640E7 
8 1022E4 620E7 
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while in the first analysis (computation), 

    (sec)   005.0=Δ==Δ tt fλ      (21) 

In a special time integration analysis (computation), carried out with the purpose to determine 
the errors with high precision, the steps of the direct time integration are considered equal to 
the very small values stated below: 

    ( ) (sec)   2005.0 12−==Δ λt      (22) 

The convergence and pseudo-convergence plots are depicted in Figs. 5 and 6, while for the 
second target solution, i.e. the floors final shear forces, the 2L  norm is implemented for 
computing the errors and pseudo-errors. Figs. 5 and 6 clearly display the validity of the claims 
discussed in the previous section, i.e. (1) larger/smaller errors imply larger/smaller pseudo-
errors, in the proper convergence regions, and vice versa, (2) validity of Eq. (19) in the proper 
convergence regions, (3) possibility to extend the previous two points to values of the 
algorithmic parameter slightly larger than those corresponding to the proper convergence 
regions. 
 
Several other examples concentrating on different approximate computations, including 
structural analysis by finite elements, nonlinearity solutions, and different ways of computing 
π  are under study. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Convergence and pseudo-convergence plots for the peak top displacements 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Convergence and pseudo-convergence plots for the final floor shear forces 
with the 2L  norm 
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Discussion 

Recognition of the most accurate computation from several approximate computations, 
though of high importance, is generally not an easy task. From the other side of view, arriving 
at solutions very close to the exact solutions, in order to lead to the computational errors, is 
computationally expensive. Even the existing error estimations are not reliable in many cases. 
In these cases, the discussions presented in this paper can be significantly effective. 
 
In this section, some complementary explanation is stated about proper convergence, how to 
check proper convergence with small computational effort, and meanwhile extension of the 
discussion to vector and matrix solutions. The equivalence addressed in Fig. 1 is a simple way 
to check the proper convergence (a simpler way based on purification of convergence [28] is 
yet not finalized). Nevertheless, for locating each point in the pseudo convergence plot two 
approximate computations should be carried out and for checking the proper convergence, at 
least two points should be located. This means three computations, and sounds entailing 
considerable additional computational cost, especially when taking into account that 
approximate computations with smaller algorithmic parameters are more costly. This is 
however not correct. For many approximate computations, e.g. solution of ordinary 
differential equations, finite element analysis, time integration analysis and nonlinear time 
history analysis against seismic excitations [17, 26, 27, 29], repetition of the computation 
after assigning smaller (mostly half) values to the algorithmic parameters (and even repetition 
of the computation by times) is strongly recommended and in cases considered as an 
obligatory requirement; see [27]. Therefore, the above-mentioned additional computational 
effort at most corresponds to one computation, and even the additional cost can be obviated 
by different approaches, from which, two are (also see [30]): (1) assigning slightly larger 
values to the algorithmic parameter in the first computation, and (2) while repeating the 
computation, considering smaller values for r in  
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Consequently, even in cases that additional computational cost basically exists, for practical 
implementation of the achievements, the additional costs can mostly be hesitated or lessened. 
 
Finally, for non-scalar solutions, the requirement of proper convergence for all components of 
the solution can be merely sufficient, not necessary (based on the norm). Components of the 
solution with small contribution in the error/pseudo-error need less to converge properly. 

Conclusions 

In this paper, it is displayed via theoretical discussion and an example, that for arbitrary 
approximate computation, solution, and problem:  

(1) From several solutions converging properly to the exact solution with similar rates, the 
most/least accurate solution converges with least/most pseudo-errors, and vice versa.  

(2) The ratio of the errors of a computation to the errors of another computation when 
both computations converge properly and with the same rate remains unchanged, if 
instead of the errors we compare the pseudo-errors.  

(3) The above two points persist for values of the algorithmic parameter slightly larger 
than those corresponding to the proper convergence regions. 

Considering the unavailability of exact solutions and the high computational effort associated 
with highly precise solutions, implementation of the achievements in practice is briefly 
discussed; more investigation is essential and strongly recommended. 
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