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Abstract:

A new method named the state space boundary element method (SSBEM) is established, in
which the problem domain is divided into two parts. One is the boundary element domain
which includes the interested inner point and the other is the state space domain. The
boundary integral equation and state space equation are combined together by the interfacial
continuity condition to form the system equation of the SSBEM. The SSBEM synthesizes
both advantages of the boundary element method and state space method, while it will get
inaccurate result when it is used to evaluate the mechanical quantity of the point very close to
the boundary element, because the Gaussian’s quadrature fails to calculate the nearly singular
integral in the boundary integral equation. The analytical formulation developed by part of the
authors before is introduced to deal with the nearly singular integral. Thus, the SSBEM can
yield accurate physical quantities for the point very close to the boundary element. The
SSBEM result can well agree with the one from the finite element method (FEM), while the
discretized element is much less than the one in the FEM. Meanwhile, the SSBEM can
analyze very thin coating while the FEM fails due to the limitation of Boolean operation
tolerance.
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1. Introduction

The state space method (SSM) is widely used in the analysis of laminated structure because of
its simple recursive formulation [1]. According to different discretization method of in-plane
variables, the SSM can be summarized as four types, which are the finite strip SSM [2]-[4],
the finite element SSM [5]-[7], the differential quadrature SSM [8] and the meshless SSM
[9]-[11]. Since only in-plane interfaces are meshed, the SSM can decrease the element
number when they are compared with the finite element method (FEM). However, when an
interested inner point is designated to be analyzed, the structure has to be delaminated into
more sub-layers to ensure that the interior point is exactly located on the interface which
undoubtedly increases the computational cost.

The boundary element method (BEM) is based on the classical integral equation formulation



of boundary value problem [12]-[15]. The unknown physical quantity at any interior point can
be directly evaluated by the boundary integral equation. The experience has shown that the
BEM has advantages over other numerical methods for reducing the calculation amount.
However, the sub-domain method has to be introduced when it comes to the laminated
structure, which will increase the redundant interface quantity in the BEM.

By coupling two independent methods, their respective merits can be enlarged and
shortcomings can be overcome. There are some direct coupling techniques, such as the
BEM-BEM method [16][17], the FEM-BEM method [18]-[20], fast multipole BEM-SSM
method [21], etc. There is also an iterative coupling technique [22]-[24] developed in the
FEM-BEM method, which provides a novel calculative strategy for the coupled method.
Herein, the BEM-SSM coupling method named the state space boundary element method
(SSBEM) is developed basing on the direct coupling technique, which can efficiently analyze
the laminated structure and easily yield the physical quantity of the inner point without
increasing the amount of calculation.

It should be pointed out that the integral kernel in the boundary integral equation will present
nearly singularity when the distance from the source point to the field point is close to but not
equal to zero. The accuracy of SSBEM, such as the evaluation of the near boundary inner
point, depends on the accurate evaluation of nearly singular integral significantly. The
analytical formulation for the nearly singular integral proposed by part of the authors before
[25] is introduced to the SSBEM, which can be used to calculate the physical quantity for
near boundary interior point accurately.

2. Boundary integral equation with analytical nearly singular integral formulation

The thermal elasticity problem is considered here, which can be degenerated to the elasticity
problem if the temperature loading is set as zero. The displacement boundary integral

equation with respect to the source point y for two-dimensional thermal elasticity problem

can be written as
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where x is the field point, i,j=12 respectively denote the direction along x- and y-axis in
the rectangular coordinate system. C,(y) is the coefficient determined by the local geometry
at point y. u;(x) and t,(x) are, respectively, the displacement and traction on the
boundary " of the structure. T(x) and oT(x)/on are the temperature and temperature

gradient at point x, respectively. U; and TS are the fundamental solutions for governing

equation of elasticity, for the plane strain problem which can be written as
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where & is the Kronecker symbol, G is the shear modulus and v is the Poisson’s ratio.

ij
r=x -y, and r=(rr)"? is the distance between the field point and source point. R and

Q' in Eqg. (1) are the fundamental solutions related to the thermal elasticity governing

equation, which can be written as
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where « is the thermal expansion coefficient.

By discretizing Eg.(1) along the boundary, the boundary element method system equation can
be yielded like

Hu =Gt 4)
where H and G are coefficient matrices, u is nodal displacement vector and t is nodal
traction vector.

After the unknown displacement and traction on the boundary 7~ being solved from Eq. (4),
the displacement at any interior point can be evaluated by the displacement boundary integral
equation

U, () = [ U5, 00=T,u, 00147+ [ [RT(x)-Q; T (x)/anldr 5)

By taking the derivative of Eq. (5) and introducing the strain-stress relationship, the stress at
any interior point can be expressed by the stress boundary integral equation
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where i,j,k=12, o/(y)=2G(1+v)a-AT(y)s,;/(1-2v) and the integral kernels are listed as

follows
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It can be observed that the integral kernels shown in Egs. (2,3) and Eg. (7) contain nearly
singular items of order O(1/r?), O(/r*) and O(1/r®). When the source point is close to the
integral element, the implementation with Gaussian's quadrature will lead to significant
inaccuracy in obtaining the results of nearly singular integral.

The integrals in Egs. (1,5,6) can be concluded as three kinds of forms as follows
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where R=r?, P(&), P,(&) and PR,(&) are the polynomial functions of local coordinate &.

By means of integration by parts, Eq. (8) is transformed into the analytical formulation [25] as
follows
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where the prime and bracket in the superscript denote the partial derivatives to ¢,
K,(n=0,1,2,3) are functions with respectto g, g=arctg(R'/5), sd=+v4ac-b’, a, b and
¢ are the expanded coefficients of r? in the local coordinate ¢&, i.e.,

r’=as’+b&+c (10)



When the polynomial function whose order is lower than four is adopted, Eq.(9) is the
analytical formulation.

3. State space equation with precise integral method

YUy A
1 2 3 M M+l
r—— O
el eZ eK eM
1% layer
B LTy - T O-=m==Ommmmmm e e o o ---<
==-=0--=--0====------- oh----—o ------------------ oy
™ layer
SoSSERanoEPonanoSsona @E==as @esosonoososonnoso0g G==ea,
coe—@c—c=@ozoo===c==o @coco@c—coccooo—o—oo==o o---4 Vil Yu
n" layer
L . .
(0]

X,u

X

Fig.1 Discretization for laminated structure in the state space method

A laminated structure composed by n layers is considered here, see Fig.1, in which each
layer could have different elastic modulus E and different thermal expansion coefficients
a . On the basis of Hellinger-Reissner variational principle, the equilibrium equation and
strain-displacement relation at any elastic layer shown in Fig. 1 can be equivalently written as

Haﬂ[E(V)a+ fldQ=0 (11a)

j j 8 [e— ET(V)uja =0 (11b)
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where ¢ and & denote strain and stress vectors, respectively, f is the body force. E(V)

is the differential operator

E(V){a/ax 0 a/ay} (12)
0 oloy olox
For the thermal elasticity problem, the stress-strain relation can be written as

e=So+J (13)

where J=[a-AT a-AT 0]", AT is the temperature loading. The flexibility matrix S can

be expressed as

,_‘
w
N

(14)

w
fiy
o O

S=|s,

o
[92]
w

where S, =1/E, S,=-v/E, S,=2(1+v)/E.

After introducing the stress-strain relationship, Eqg.(11) can be transformed into
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where u, and u, are the displacements along the x-axis and y -axis, respectively. The

relationship between the traction and stress on the boundary or at the interface can be written
as

t=0,, t,=0 (16)

X xy 1oty yy

In the state space method, only the horizontal interfaces are discretized and it is assumed that
M linear elements are meshed on each interface as shown in Fig. 1. By integrating along the
x-coordinate and considering Eq.(16), Eq.(15) can be written as

L{;:}T(A:_y{?}_ B{Lt‘}ms + MTde -0 (17a)

L{&}T(Ds - E{L:} + NTde -0 (17b)

where A, B, C, D, E, M and N are the coefficient matrices deduced from Eq.(15).

The vector s and T are respectively composed of nodal stress o, and nodal temperature
variation.
By eliminating s from Eq. (17) and utilizing the variational principle, the state equation at

any layer can be written as

R _wr+B (18)

dy
where the state variable R={u"t'}' , W=A'(B-CD'E) , and the vector

B=A"(CD "N - M)T, which is the term related to the temperature variation.

The precise integral method [26] is introduced to solve Eq. (18). Let’s take the jth layer in
Fig. 1 for example. If the jth layer is sufficiently thin, R,(y) and B,(y) in Eq. (18) can be

approximated by [R,(y,)+R;(y,)l/2 and [B,(y,)+ B;(y,)l/2, respectively, where y, and



y, arey-coordinates of the upper interface and lower interface of the jth layer, respectively.

For the layer which is not thin enough, it can be divided into K, =2 sub-layers with

uniform thickness and each sub-layer can be approximately calculated as a thin layer. For the

ith sub-layer in the jth layer, Eq. (18) can be written in the integrated form as follows
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where A, is the thickness of each sub-layer. By utilizing the approximation in the ith
sub-layer which is thin enough, Eq. (19) can be transformed into

(1-O)RP(iA)) = (1 +O)RP((i-1A ;) +U (20)
where O=AW,/2, U{"=A[B,(iA,)+B,((i-1A)]/2 and 1 is a unit matrix. By applying

Eq. (20) to each sub-layer and using the continuity condition between the interface of two
adjacent sub-layers, i.e.,

RO[I-14,]= R -14,] (21)

one can get
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i=1

The matrices (1-0) and (1 +0)" can be calculated by using the iteration process. The
K )

calculation of the last ittem U;=> (1+0)“"(I-0)"*U" in Eq. (22) need to use the
i=1

identity (1-0)(1+0)=(I+0)(1-0) which can reduce the iteration times from K, =2" to

k. Then, Eq. (22) is transformed into the equation as follows

GO0 ()
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where u,(y,), t;(y,) and u,(y,), t;(y,) denote the displacement and traction on the lower

and upper surface of the jth layer, respectively.

4. State space boundary element method

Let’s take a three-layered laminated structure shown in Fig. 2 for instance to explain the
establishment of the state space boundary element method. The laminated structure is divided
into two parts, in which the 1st layer is the BEM domain and the others are in the range of the



SSM domain.
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Fig.2 BEM and SSM domain in the state space boundary element method

In Fig. 2, the notation i and iv denote the upper and lower edge, respectively. ii and iii
denote the interface between two adjacent layers, respectively. For the BEM domain, the
linear equation system can be formed on the basis of Eq.(4) and written as
B B
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where the superscript B means that the corresponding component is in the BEM domain, the
subscript OB denotes the outer boundary of the BEM domain. On basis of Eq.(23), the
thermal elasticity state space equation for the second and third layer can be respectively
expressed as

[le st]{Ltji:i}:[Pls st]{;]i:“}_uz (258.)
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where the superscript S means that the corresponding parameter is in the SSM domain.
By utilizing the continuity conditions at the interface between the BEM domain and SSM
domain

uf =ui, tf =tj (26)

to combine Eq.(24) and Eq.(25), the state space boundary element equation of a laminated
structure can be finally written as follows
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The unknown physical quantity on the outer boundary at BEM domain and the one on all
interfaces can be yielded after Eq.(27) being solved. Then, the displacement and stress of near
boundary interior point in the BEM domain can be accurately evaluated by introducing the
analytical formulation to the boundary integral equation.

5. Numerical examples

5.1 A sandwich structure

Let’s take a three-layered sandwich structure shown in Fig. 2 into consideration. The first and
third layer are set as SizNg4, whose elastic modulus is 3.04 x10"Pa, Poisson’s ratio is 0.27 and
thermal expansion coefficient is 2.8x107°/°C. The second layer is set as Cu, whose elastic
modulus is 1.08x10"Pa, Poisson’s ratio is 0.33 and thermal expansion coefficient is
1.64x10°/°C. The length and thickness of the structure respectively are |=1m and

w=0.0Im. h,=h,=05m and h is kept decreasing. It will lead to the nearly singular

integral in the SSBEM when h is small. The elasticity problem and thermal elasticity

problem are respectively considered here. In the elasticity problem, the uniform pressure

p=1x10°N/m? is loaded on the upper surface of the first layer. In the thermal elasticity

problem, the temperature loading A7 =1°C is subjected.

The physical quantities of interfacial point A(0.5m,1m) with different h, are calculated by

three different methods. The first one is the conventional SSBEM abbreviated as CSSBEM, in
which the nearly singular integral is calculated with Gaussian's quadrature. The second one is
the analytical SSBEM abbreviated as ASSBEM, in which the analytical formulation is
applied to evaluate the nearly singular integral. The third one is the finite element method,
which is introduced to provide the reference result.

The vertical edges are restrained along the x-axis and the bottom edge is restrained along the
y-axis. For the CSSBEM and ASSBEM, 20 elements with each length 0.05m are discretized
on each interface and horizontal edge. The left and right vertical edges in the BEM domain
are discretized respectively by 2 linear elements and the whole structure is meshed with 84
linear elements in total. For the FEM, 8-node quadratic plane element is implemented in the
FEM software ANSYS (Version 10.0). In order to harmonize the element size in vertical and
horizontal direction in the FEM, the element number thus increases dramatically as the 1°

layer’s height h, decreases. Due to the limitation of Boolean operation tolerance in ANSY'S,
the FEM can only model the cases when h >5.0e-4m. Meanwhile, there are totally 26000

elements and 78481 nodes when h, =5.0e-4m in the FEM model.
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For the elasticity problem, the comparison of quantities at point A by three different
methods is listed in Table 1, from which it can be concluded that the results by the ASSBEM
and CSSBEM have a good agreement with the one by the FEM. The results of displacement

and stress by the ASSBEM keep steady from h =0.05m to h, =5.0e-8m. However, the

results by the CSSBEM deteriorate when h, =5.0e-5m.

Table 1 Displacement and stress at point A in elasticity problem

u, (x10*mm) 0« (MPa)
hy(m)

ASSBEM CSSBEM FEM ASSBEM CSSBEM FEM
5.0e-02 -0.565 -0.565 -0.565 -27.00 -27.00 -27.00
2.5e-02 -0.565 -0.565 -0.565 -27.00 -26.99 -27.00
5.0e-03 -0.565 -0.565 -0.565 -27.00 -27.03 -27.00
5.0e-04 -0.565 -0.565 -0.565 -27.00 -27.04 -27.00
5.0e-05 -0.565 -0.566 / -27.00 -30.23 /
5.0e-06 -0.565 -0.743 / -27.00 / /
5.0e-07 -0.565 / / -27.00 / /
5.0e-08 -0.565 / / -27.00 / /

For the thermal elasticity problem, the physical quantities at interfacial point A calculated
by three methods are compared in Table 2. Due to the computational limitation, the ANSYS

can only analyze the structure for h >5.0e-4m. It can be observed from Table 2 that the
result from the ASSBEM keeps steady from h, =0.05m to h =5.0e-9m, however, the

CSSBEM can only obtain accurate results when h >5.0e-5m.

Table 2 Displacement and stress at point A in thermal elasticity problem

u, (x10*mm) 0« (MPa)
hy(m)
ASSBEM CSSBEM FEM ASSBEM CSSBEM FEM
5.0e-02 1.2684 1.2684 1.2684 -85.12 -85.12 -85.12
2.5e-02 1.2684 1.2684 1.2684 -85.12 -85.12 -85.12
5.0e-03 1.2684 1.2684 1.2684 -85.12 -85.12 -85.12
5.0e-04 1.2684 1.2684 1.2684 -85.12 -85.12 -85.12
5.0e-05 1.2684 1.2687 / -85.12 -85.11 /
5.0e-06 1.2684 1.3358 / -85.12 -82.59 /

5.0e-07 1.2684 / / -85.12 / /



5.0e-08 1.2684 / / -85.12 / /

5.0e-09 1.2684 / / -85.12 / /

To investigate the evaluation ability of nearly singular integral, h is set as 0.5m, and let

y - coordinate of the inner point approach to the boundary.

For the elasticity problem, the displacement u, and stress o, at different inner point (0.5m,
y) obtained by the ASSBEM, CSSBEM and FEM are listed in Table 3, where the
displacement and stress at boundary point B(0.5m,1.5m) are listed at the bottom line. The

physical quantity of the interior point will converge towards the one at boundary point B
when it is approaching to the boundary. For the CSSBEM, the stress is invalid when

y=1.475m and the vertical displacement loses the accuracy when y=1.495m. On the

contrary, the results by ASSBEM approximately equal to the boundary value when the inner
point is very close to the boundary.

Table 3 Displacement and stress at near boundary inner point in elasticity problem

u, (x10~*mm) o, (MPa)
y(m)

ASSBEM CSSBEM FEM ASSBEM CSSBEM FEM
1.400000 -0.687 -0.687 -0.687 -27.00 -27.00 -27.00
1.450000 -0.702 -0.702 -0.702 -26.99 -26.99 -27.00
1.475000 -0.710 -0.709 -0.710 -27.00 -39.81 -27.00
1.490000 -0.715 -0.727 -0.714 -27.00 / -27.00
1.495000 -0.716 -0.731 -0.716 -27.00 / -27.00
1.497500 -0.717 -0.596 / -27.00 / /
1.499500 -0.717 / / -27.00 / /
1.499750 -0.717 / / -27.00 / /
1.499950 -0.718 / / -27.00 / /
1.499995 -0.718 / / -27.65 / /
1.500000 -0.718 -0.718 -0.718 -27.00 -27.00 -27.00

For the thermal elasticity problem, u, and o, of different inner point (0.5m, y) are listed in

Table 4, from which it can be observed that the thermal displacement by the CSSBEM is
invalid when y is smaller than 1.495m, and the thermal stress loses accuracy wheny is smaller
than 1.45m. On the contrary, the results by the ASSBEM are accurate and stable because they



converge to the values of boundary point B(0.5m,1.5m).

Table 4 Displacement and stress at near boundary inner point in thermal elasticity problem

u, (x107*mm) o, (MPa)
y(m)

ASSBEM CSSBEM FEM ASSBEM CSSBEM FEM
1.400000 1.4106 1.4106 1.4106 -85.12 -85.12 -85.12
1.450000 1.4284 1.4284 1.4284 -85.14 -85.14 -85.12
1.475000 1.4373 1.4364 1.4373 -85.12 -59.42 -85.12
1.490000 1.4426 1.4681 1.4426 -85.13 / -85.12
1.495000 1.4444 1.4742 1.4444 -85.12 / -85.12
1.497500 1.4453 1.2018 / -85.11 / /
1.499500 1.4460 / / -85.11 / /
1.499750 1.4461 / / -85.11 / /
1.499950 1.4462 / / -85.11 / /
1.499995 1.4462 / / -83.77 / /
1.500000 1.4462 1.4462 1.4462 -85.12 -85.12 -85.12

5.2 A functionally graded material structure

The functionally graded material (FGM) is delaminated as an 11-layered structure shown in
Fig. 1, except that the 1% layer is controlled by the BEM, the other 10 layers are set as the
SSM domain. The length, height and thickness of each layer are set as 1m, 0.1m and 0.01m,

respectively. The elastic modulus varies as the function E(i)=2“**" x10"Pa and the

thermal expansion coefficient of each layer varies as «(i)=ix10"/°C, where i denotes the

i th layer. The Poisson’s ratio of each layer is set as 0.3. The vertical edges are restrained
along the x-axis and the bottom edge is restrained along the y-axis. The whole structure is

subjected to 1°C temperature increase. The contour plot of displacement u, by the

ASSBEM and FEM are compared in Fig. 3.
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Fig.3 Comparison of contour plot of displacement u, by ASSBEM and FEM



It can be observed from Fig. 3 that the results by the ASSBEM agree well with the ones
by the FEM. The structure can freely expand along the y-axis according to the boundary
condition. It can be deduced that the maximum vertical displacement should appear on
the upper edge. Definitely, the maximum vertical displacement occurs on the upper edge

in Fig. 3, which is 0.858x10° mm.
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Fig.4 Comparison of contour plot of stress o, by ASSBEM and FEM

The contour plot of stress o, obtained by ASSBEM is compared with the one by FEM in

Fig. 4, from which it can be observed that the results by these two methods have a good

agreement with each other. It also can be found that the absolute o, decreases along y-axis

since the thermal expansion coefficient gets smaller in this direction. The absolute minimum

o, occurs on the upper edge which is 1MPa, while the absolute maximum o, appears on

the bottom which is 176 MPa .

6. Conclusions

The state space boundary element method is established by coupling the state space method
and the boundary element method, in which the analytical formulation of nearly singular
integral is introduced. It is especially suitable for calculating the mechanical quantity of the
near boundary inner point in the laminated structure. The accuracy of the present method is
verified by the finite element method. The present results for the displacement and stress at
near boundary inner point are approaching to the boundary values when the ANSY'S fails to
provide the reference results.
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