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Abstract 

A new modeling approach using two different zero-load geometries (diastole and systole) was 
introduced to properly model active contraction and relaxation for more accurate stress/strain 
calculations. Ventricle diastole and systole material parameter values were also determined based 
on in vivo data. Echo image data were acquired from 10 healthy volunteers at the First Affiliated 
Hospital of Nanjing Medical University with consent obtained. Echo-based computational two-
layer left ventricle (LV) models using one zero-load geometry (1G) and two zero-load geometries 
(2G) were constructed. Material parameter values in Mooney-Rivlin models were also adjusted 
during the cardiac cycle to match Echo volume data. Effective Young’s moduli (YM) were 
calculated for ventricle materials for easy comparison.   

Using the mean values of the 1G models as the baseline values, at begin-filling, the mean YM 
value for the fiber direction (YMf) from the 2G model was 107% higher than that from the 1G 
model (723.57 kPa vs. 348.71 kPa). At begin-ejection, YMf from 2G model was 47% lower than 
that from the 1G model (85.48 kPa vs. 162.77kPa). According to the total average values, begin-
ejection stress and strain from the 2G model were 30% and 14.5% higher than that from the 1G 
model, respectively (345.16 kPa vs. 265.62 kPa; and 1.0489 vs. 0.9161). Begin-filling stress and 
strain from the 2G model were 11.5% and 55% higher than that from the 1G model, respectively 
(2.2613 kPa vs. 2.5543 kPa; and 0.0489 vs.0.1085). During a cardiac cycle, the 2G model begin-
ejection YMf, stress and strain were 19%, 495% and 29% higher than their end-filling value, end-
ejection YMf, stress and stain were 49%, 605% and 297% higher than their begin-filling value, 
respectively. 

The 2G model took ventricle zero-load geometry difference between systole and diastole phases 
into consideration. This may lead to more accurate ventricle stress/strain calculations and 
material parameter value estimations. 
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Introduction 

Myocardial contractility plays a central role in the cardiovascular circulatory system.  A non-
invasive method for estimating myocardial contractility would be a beneficial tool for 
cardiologists. As a first-order approximation, an approach using two zero-load geometries (2G) is 
proposed to model ventricle cardiac motion: one zero-load ventricle geometry is used to model 
the diastole phase where sarcomere has its relaxed zero-stress length, another zero-load ventricle 



geometry is used to model the systole phase where sarcomere has its contracted zero-stress length 
(therefore the zero-load systole geometry is smaller than the zero-load diastole geometry). 
Essentially, we are using two models to model the cardiac cycle to handle the active contraction 
and relaxation which are caused by zero-stress sarcomere length changes. 

Active contraction is caused by sarcomere shortening which leads to increased strain and stress 
(called active strain and stress).  At the beginning of active contraction, the zero-stress sarcomere 
length is shortened in a very short time duration while ventricle volume has no change, so in vivo 
sarcomere length does not change, which leads to ventricle strain and stress increases, equivalent 
to the active tension in models in [4][8] for the stress part. McCulloch and Pfeiffer have made 
great contributions to passive and active ventricle modeling, such as the Physiome Project and 
the Continuity package [5][9][11]. Guccione et al. proposed the constitutive relations for active 
stress in cardiac muscle and developed three active tension models [2]-[3]. Liu et al. developed a 
dynamic cardiac elastography framework to assess the anisotropic viscoelastic passive properties 
and active contractility of myocardial tissues [6].  Pezzuto and Ambrosi focus on the contraction 
of the left ventricle in a finite elasticity framework, adopting the “prolate ellipsoid” geometry and 
the invariants-based strain energy proposed by Holzapfel and Ogden [10]. Our group introduced 
patient-specific cardiac magnetic resonance (CMR)-based right ventricle/left ventricle models 
with fluid-structure interactions with various surgical design and potential applications [12]-[15].   

In this papers, a new modeling approach using different systole and diastole zero-load geometries 
was introduced to properly model active contraction and relaxation and obtain ventricle diastole 
and systole material parameter values, stress and strain conditions. New models were constructed 
for 10 patients and results were compared with our previously published one-geometry models 
[7].  

Methods 

Modeling active contraction and expansion by using different zero-load diastole and systole 
geometries 

Since active LV contraction and relaxation are very complex and involve change of sarcomere 
zero-stress length which is hard to model using a single no-load LV geometry, some model 
simplifications are needed to obtain proper models to serve our purposes.  Actual LV contraction 
and expansion involve two different RV zero-stress geometries (diastole and systole) and inter-
connected changes of LV volume, pressure, stress/strain, and imposed active stress or active 
material properties.  It is commonly accepted that a cardiac cycle may be divided into 4 phases, 2 
in diastole (isovolumic relaxation followed by diastolic filling) and 2 in systole (isovolumic 
contraction followed by systolic emptying). To correctly model these 4 phases, two zero-stress 
geometries are needed. However, such two-geometry active contraction/expansion models are 
computationally expansive to construct.  McCulloch et al. have introduced active tension in their 
sophisticated multiscale ventricle models with good success [2]-[3][5].  Tang et al. introduced 
LV/RV models with fluid-structure interactions using material stiffness variations to handle 
active contraction and relaxation [13]. Both active tension and stiffness variation approaches 
involved adding additional terms in tissue material strain energy functions.   

Phase 1. Filling (diastole phase).  The left ventricle starts with its minimum volume under 
minimum pressure with minimum stress and strain. One zero-load geometry (diastole geometry) 
is used for this phase, corresponding to diastole zero-stress sarcomere length (SL).  It should be 



noted that zero-stress status is a concept for stress/strain calculations.  It is not observable in a 
living heart under in vivo conditions.  At beginning-of-filling, mitral valve opens; LV volume 
increases, pressure increases, in vivo SL expands; strain and stress increases.  Phase 1 ends when 
LV reaches its maximum volume under end-diastole pressure (denoted by Pdia) which is lower 
than the maximum pressure condition.   

Phase 2. Isovolumic contraction:  Both mitral (inlet) and aortic (outlet) valves are closed; LV 
volume has no change; zero-stress SL shortens (changing from diastole zero-stress length to 
systole zero-stress length); however, this sarcomere shortening is not physically observable.  
Roughly, average in vivo SL does not change much (small local SL changes are possible) since 
LV volume does not change.  So zero-stress SL shortening leads strain and stress increase (This 
is similar to the active tension in other models, but our model have both strain and stress 
increase);  increased stress pushes pressure to maximum. This phase is short.  This phase 
involves dynamic change of zero-stress sarcomere length which is very difficult to implement.  It 
was skipped in our model. 

Phase 3. Ejection (systole phase):  This phase starts from max volume, pressure, stress and strain.  
One zero-load geometry (for systole phase) is used for this phase, corresponding to systole zero-
stress SL.  At begin-ejection, aortic valve opens up and ejection starts; LV volume drops; in vivo 
SL shortens and strain decreases; pressure drops; stress drops. At end-systole (end-ejection), LV 
volume reaches its minimum, pressure drops to the end-systole pressure denoted as Psys, which 
is greater than minimum pressure.  Pressure will continue to drop in Phase 4 when systole zero-
stress SL changes to diastole zero-stress SL.   

Phase 4. Isovolumic relaxation: Aortic valve closes (both valves closed); zero-stress SL relaxes 
from systole zero-stress length to diastole zero-stress length (non-contracted length); similar to 
the comments made in Phase 2, roughly, average in vivo SL does not change much since volume 
does not change; zero-stress SL relaxation leads to strain and stress decreases; pressure drops to 
minimum. This phase is short. It was also skipped in our model. 

3D echo data acquisition 

Patients were recruited to participate in this study with consent obtained (n=10, 7 males, mean 
age 54.9 years).  Echo data acquisitions were performed at the First Affiliated Hospital of 
Nanjing Medical University, Nanjing, China. Standard echocardiograms were obtained using an 
ultrasound machine (E9, GE Mechanical Systems, Milwaukee, Wisconsin) with a 3V probe. 
Patients were examined in the left lateral decubitus position, and images were acquired at end 
expiration in order to minimize global cardiac movement. Details of the data acquisition 
procedures were previously described and are omitted here [7]. Figure 1 shows the echo images, 
zero-load and re-constructed 3D LV geometries.  
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Figure 1. Echo image of a healthy volunteer, contours, zero-load diastole and systole 
geometries and re-constructed pressurized geometries.   

Two-layer anisotropic LV moel construction with fiber orientations 

Standard governing equations and boundary conditions for the LV model were given: 
                   , , , , 1, 2, 3; sum over ,i t t i j jv i j j               (1) 

                      , , , ,( ) 2, , , 1,2,3,i j i j j i i jv v v v i j     
                                           

(2) 

where  is the stress tensor,  is the strain tensor, v is displacement, and  is material density. 
The normal stress was assumed to be zero on the outer (epicardial) LV surface and equal to the 
pressure conditions imposed on the inner (endocardial) LV surfaces.  

The ventricle material was assumed to be hyperelastic, anisotropic, nearly-incompressible and 
homogeneous. The nonlinear Mooney-Rivlin model was used to describe the nonlinear 
anisotropic material properties. The strain energy function for the anisotropic modified Mooney-
Rivlin model is given: 

2
1 1 2 2 1 2 1 1 2 2 4W=c (I -3)+c (I -3)+D [exp(D (I -3))-1]+ K (2K )exp[K (I -1) -1],                 (3) 

where I1 and I2 are the first and second strain invariants given by, 
         21
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C =[Cij] = XTX is the right Cauchy-Green deformation tensor, X=[Xij] = [∂xi/∂aj], (xi) is the 
current position, (ai) is the original position, nf is the fiber direction, ci,  Di and Ki are material 
parameters chosen to match experimental measurements [1][13]. With parameters properly 
chosen, it was shown that stress-strain curves derived from Eq. (3) agreed very well with the 
stress-strain curves from the anisotropic (transversely isotropic) strain-energy function with 
respect to the local fiber direction given in McCulloch et al.[8]: 
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where Eff is fiber strain, Ecc is cross-fiber in-plane strain, Err is radial strain, and Ecr, Efr and Efc are 
the shear components in their respective coordinate planes, C, b1, b2, and b3 are parameters to be 
chosen to fit experimental data. For simplicity, we set b1=0.8552, b2=1.7005, b3=0.7742 in Eq. (6) 
so that we can have a single parameter C for comparison.  The least-squares method was used to 
find the equivalent Young’s moduli (YM) for the material curves for easy comparison. Active 
contraction and expansion of myocardium were modeled by material stiffening and softening in 
our model.  Material stiffening and softening were achieved by adjusting parameter values at 
each Echo-time step (28 Echo frames per cycle) to simulate active contraction and expansion and 
match LV volume data.  

As patient-specific fiber orientation data was not available from these patients, we chose to 
construct a two-layer LV model and set fiber orientation angles using fiber angles given in Axel 
[1].  Fiber orientation angles were set at -60 degree and 80 degree for epicardium (outer layer) 
and endocardium (inner layer), respectively. Fiber orientation can be adjusted when patient-
specific data becomes available [12].   

A pre-shrink process and geometry-fitting technique for mesh generation  

Under in vivo condition, ventricles were pressurized and the no-load ventricular geometries were 
unknown.  In our model construction process, an iterative pre-shrink process was applied to the 
in vivo minimum volume ventricular geometry to obtain the two zero-load geometries so that 
when in vivo pressure was applied, the ventricle would regain its in vivo geometry.  To get the 
zero-load diastole geometry, we start with a 4% shrinkage, construct the model, and apply the 
minimum pressure to see if the pressurized LV volume matches the Echo data.  If not, we adjust 
the shrinkage, re-made the model, pressurize it and check again.  The process is repeated until LV 
volume matches Echo volume with error < 0.5%.  For the zero-load systole geometry, assuming a 
10-15% sarcomere shortening, we start with a 14% shrinkage.  Different shrinkage rates were 
used for LV inner and outer surfaces so that mass conservation law was enforced. The same 
process was repeated until the pressurized LV volume under end-systole pressure matched the 
Echo-measured end-systole volume data.   

A geometry-fitting mesh generation technique was also used to generate mesh for our models 
[13].  Mesh analysis was performed by decreasing mesh size by 10% (in each dimension) until 
solution differences were less than 2%.  The mesh was then chosen for our simulations. 

Solution methods and Data collection for Statistical analysis 

The anisotropic LV computational models were constructed for ten patients and the models were 
solved by ADINA (ADINA R&D, Watertown, MA, USA) using unstructured finite elements and 
the Newton-Raphson iteration method.  Stress/strain distributions were obtained for analysis. 
Because stress and strain are tensors, for simplicity, maximum principal stress (Stress-P1) and 
strain (Strain-P1) were used and referred to as stress and strain in this paper. For each LV data set 
(11 slices.  Slices are short-axis cross sections), we divided each slice into 4 quarters, each 
quarter with equal inner wall circumferential length. Ventricle wall thickness, circumferential 
curvature (C-curvature), longitudinal curvature (L-curvature) and stress/strain were calculated at 
all nodal points (100 points/slice, 25 points/quarter).  The “quarter” values of those parameters 
were obtained by taking averages of those quantities over the 25 points for each quarter and 



saved for analysis.   The quarter values of those from the ten patients were compared to see if 
there are any statistically significant differences.   

Results and Discussion 

The purpose of this paper is to introduce the new model with 2 zero-load geometries (2G model), 
compare the results with our previous model which used 1 zero-load geometry (1G model). For 
the 1G model, results at begin-filling (BF) and begin-ejection (BE) corresponding to minimum 
and maximum pressure and LV volume were obtained for comparison.  For the 2G model, results 
at begin-filling (BF), end-filling (EF), begin-ejection (BE), and end-ejection (EE) were obtained 
for comparison.  Due to 1G model limitation, EF and BE from 1G model had the same geometry, 
pressure and material conditions. Therefore, 1G EF and BE stress/strain values were also the 
same. 

Human ventricle tissue material properties are extremely hard to quantify noninvasively under in 
vivo conditions.  Myocardium material stiffness changes in a cardiac cycle. Figure 2 gives the 
stress-stretch curves for 1G and 2G models from one patient to illustrate the material differences. 
Bar plots of mean YM value in the fiber direction (YMf) of the 10 patients from 1G and 2G 
models were in Fig. 3 (a) showing clear comparisons.   Using the mean values of 1G models as 
the baseline values, at BF, YMf from 2G model was 107% stiffer than that from the 1G model 
(723.57 kPa vs. 348.71 kPa). At BE, YMf from 2G model was 47% lower than that from the 1G 
model (85.48 kPa vs. 162.77kPa). At EF, YMf from 2G model was 56% lower than that from the 
1G model (71.683 kPa vs. 162.77kPa). At EE, YMf from 2G model was 210% higher than that 
from the 1G model (1080.95 kPa vs. 348.71 kPa). This indicated the material parameter 
properties from 2G models were stiffer than that from 1G model at BF and EE corresponding to 
minimum LV volume, and softer than that from 1G model at BE and EF corresponding to 
maximum LV volume. From 2G models, BE YMf was 19% higher than its EF value (85.48 kPa 
vs. 71.68 kPa), EE YMf was 49% higher than its BF value (1080.95 kPa vs. 723.57 kPa). 

(a) Stress-Stretch curves used for 
the diastole phase in 2G model 

(b) Stress-Stretch curves used for 
the systole phase in 2G model

(c) Stress-Stretch curves, 1G begin-filling     
and begin-ejection 
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Figure 2. Material Stress-Stretch curves and YMf comparison for 1G and 2G models.  Tff: 
stress in fiber direction; Tcc: stress in circumferential direction.  YMf : Young’s Modulus in 
fiber direction.  BF: Begin-Filling; EF: End-Filling. BE: Begin-Ejection; EE: End-Ejection. 



Table 1.  Material parameters from the 2G and 1G models. 

 C(kPa) YMf(kPa) C(kPa) YMf(kPa) C(kPa) YMf(kPa) 
 1G-BF 2G-BF 2G-EF  

P1 10.102  290.47 18.9420 544.62  2.3813 68.467 
P2 11.185  321.59 25.9776 746.91 2.3452 67.429 
P3 11.365  326.77 21.6480 622.43  3.1390 90.252  
P4 10.283  295.65 19.1224 549.81  2.8503 81.953  
P5 11.419  328.33 19.8440 570.56  2.1648 62.243  
P6 14.432  414.95 28.8640 829.91  1.7860 51.350  
P7 13.530  389.02 31.5700 907.70  1.5695 45.126  
P8 10.102  290.47 21.6480 622.43  4.4198 127.08  
P9 19.483  560.18 46.9040 1348.59 1.2628 36.308  
P10 9.3808  269.72 17.1380 492.75 3.0127 86.621  

Mean 12.128  348.71  25.1658 723.57  2.4931 71.683  
 1G-BE 2G-BE 2G-EE  

P1 5.7367  164.94 2.4895 71.579  31.029 892.14  
P2 5.2857  151.98 2.6519 76.247  38.425 1104.8  
P3 8.0278  230.82 3.4998 100.625 32.652 938.82  
P4 7.7211  102.23 3.7523 107.887 31.390 902.52  
P5 6.0073  172.72 2.3272 66.911  33.735 969.95  
P6 4.5100  129.67 2.0205 58.093  38.786 1115.2  
P7 3.6621  105.29 1.8040 51.869  45.100 1296.7  
P8 9.4710  272.31 6.4944 186.728 37.884 1089.2  
P9 2.9586  85.065 1.3710 39.420  52.316 1504.2  
P10 7.3964  212.66 3.3194 95.439  34.637 995.88  

Mean 6.0777  162.77  2.9730 85.480  37.595 1080.95  

Table 2 summarizes the average stress and strain values of the 10 patients from the 1G and 2G 
models.  Bar plots of mean stress/strain values of the 10 patients from 1G and 2G models were in 
Fig. 3 (b) and (c) showing clear comparisons. According to the total average values in Table 3, 
BE stress values from the 2G model was 30% higher than that from the 1G model (345.16 kPa vs. 
265.62 kPa).  BF stress values from the 2G model was 14.5% lower than that from the 1G model 
(2.2613 kPa vs. 2.5543 kPa). BE strain values from the 2G model was 11.5% higher than that 
from the 1G model (1.0489 vs. 0.9161).  BF strain values from the 2G model was 55% lower 
than that from the 1G model (0.0489 vs.0.1085). From 2G models, BE stress average value was 
511% higher than its EF value (354.16 kPa vs. 57.96 kPa), EE stress average value was 605% 
higher than its BF value (15.94 kPa vs. 2.26 kPa). BE strain average value was 29% higher than 
its EF value (1.0489 vs. 0.8110), EE strain average value was 297% higher than its BF value 
(0.1942 vs. 0.0489).  Bar plots of wall thickness and curvature results in Fig. 3 (d)-(f) shows the 
geometrical characteristics from the 1G and 2G models were about the same.   

 



Table 2.   Comparison of average stress and strain results from 2G and 1G models 

Patient 1G-BF 1G-BE 2G-BF 2G-EF 2G-BE 2G-EE 
Average stress 

P1 2.3290  224.68 1.9345  47.986 311.31 15.429  
P2 2.8488  293.62 2.6241  58.033 372.43 17.785  
P3 2.3849  185.83 2.0071  37.989 265.97 15.331  
P4 2.4531  186.16 1.8084  30.841 255.31 14.907  
P5 2.5214  290.74 2.3700  62.283 401.50 16.690  
P6 2.2008  277.08 2.0724  64.571 353.67 13.015  
P7 1.8442  292.55 1.7388  74.045 363.51 12.619  
P8 3.4650  221.26 2.8673  41.191 261.86 18.875  
P9 2.7979  408.15 2.6838  105.48 495.94 15.139  

P10 2.6982  276.19 2.5062  57.221 370.09 19.644  
Mean 2.5543  265.62 2.2613  57.964 345.16 15.943  

                                       Average strain 
P1 0.1121  0.8845 0.0508  0.7820 1.0297 0.2120  
P2 0.1228  0.9206 0.0502  0.7972 1.0360 0.2021  
P3 0.1103  0.8492 0.0497  0.7437 1.0135 0.2172  
P4 0.1215  0.8438 0.0496  0.7150 0.9860 0.2145  
P5 0.1110  0.9293 0.0613  0.8437 1.0948 0.2185  
P6 0.0826  0.9910 0.0393  0.9049 1.1325 0.1700  
P7 0.0716  0.9935 0.0291  0.9102 1.1110 0.1403  
P8 0.1514  0.8061 0.0615  0.6632 0.8768 0.2042  
P9 0.0726  1.0780 0.0289  0.9904 1.2036 0.1403  

P10 0.1292  0.8654 0.0684  0.7598 1.0053 0.2227  
Mean 0.1085  0.9161 0.0489  0.8110 1.0489 0.1942  

(d) WT (cm) comparisons (f) C-cur (1/cm)  comparisons (g) L-cur (1/cm)  comparisons 

(b) Stress (kPa ) comparisons (c) Strain comparisons(a)YMf (kPa) comparisons

 

Figure 3.  Bar plots for LV YMf, Stres, Strain, wall thickness (WT), circumferential 
curvatures (C-cur) , longitudinal curvature (L-cur) comparisons from 1G and 2G models.  
Blue: 1G; Red: 2G. 



Conclusions 

Correct stress/strain calculation is of fundamental importance for many cardiovascular research 
where mechanical forces play a role.  Ventricle remodeling, disease development, tissue 
regeneration, patient recovery after surgery and many other cell activities are closely associated 
with ventricle mechanical conditions.  The 2G modeling approach is setting up the right stage for 
diastole and systole stress/strain calculations using proper zero-load geometries.  1G models do 
not use different reference geometries for systole and diastole phases, therefore have difficulties 
in giving right strain calculations.  It should be noted that direct measurements of stress, strain, 
and zero-load sarcomere length are either extremely difficult or even impossible.  Even by using 
tagging, the strain determined uses in vivo references and could not account for zero-stress SL 
changes.  Actual ventricle contraction and relaxation are very complex.  Our model is only a first-
order approximation, an improvement over the 1G models.  Lack of in vivo data and model 
construction cost are also considerations.  Data from the literature or from ex vivo experiments 
have to be used to complete the computational models.   We are in need of patient-specific data 
such as fiber orientation, sarcomere length contraction rate, regional material properties, etc. 
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