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Abstract 
In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often 
appears and contaminates the real solution, and sometimes can even make the computation 
divergent. Using a signal processing approach, a dual wavelet shrinkage procedure is 
proposed, which allows one to extract the real solution hidden in the numerical solution with 
oscillation. The dual wavelet shrinkage procedure is introduced after applying the local 
differential quadrature (LDQ) method, which is a straightforward technique to calculate the 
spatial derivatives. Results free from numerical oscillation can be obtained, which can not 
only capture the position of shock and rarefaction waves, but also keep the sharp gradient 
structure within the shock wave. Three model problems, a one-dimensional dam break flow 
governed by shallow water equations, and the propagation of a one-dimensional and a 
two-dimensional shock wave controlled by the Euler equations, are used to confirm the 
validity of the proposed procedure. 
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1. Introduction  

Due to the nonlinearity, most problems governed by hyperbolic PDEs in fluid dynamics have 
to be solved numerically. The main difficulty is that the solution of hyperbolic PDE are 
bound to develop discontinuities in finite time. A conventional numerical scheme, such as 
finite difference or finite volume, is directly applied to solve shock wave problem. Two 
serious problems may appear simultaneously or separately: (1) smearing out shock wave 
gradually; (2) polluting the shock wave by numerical oscillation. In the recent several 
decades, people have developed many numerical schemes to maintain the sharp gradient 
structure of shock wave, meanwhile avoiding the numerical oscillation. Godunov [1959] was 
credited with introducing the first Riemann solver for the Euler equations, by extending the 
previous Courant-Isaacson-Reeves (CIR) method to non-linear systems of hyperbolic 
conservation law. To increase computation’s effectiveness, Roe[1981] proposed a second 
order ROE solver through taking average of square root of density on double sides of a cell. 
Subsequent works were HLL and HLLC schemes [Toro (1999)]. Efforts in this field led to 
the proposal of total variance diminishing (TVD) [Loubere et al (2014), Toro (1999)] and 
weighted essentially non-oscillating (WENO) schemes [Liu et al(1994), Abgrall (1994)]. 
Besides these sophisticated schemes, Shyy proposed a non-linear filtering algorithm to 
eliminate numerical oscillation from second-order central or upwind differencing in 
calculation of shock wave [Shyy et al (1992)]. The filter has proved to be very effective in 



  
suppressing oscillation of short wavelength. However, the effect in removing the oscillation 
of long wavelength is not so promising. Kang introduced a multi-resolution analysis (MRA) 
for increasing computation’s efficiency with preserving the high order numerical accuracy of 
a conventional solver [Kang et al (2014)]. Inspired by their work, we discovered that 
wavelet’s application in suppressing numerical oscillation around the shock wave. Wavelet 
analysis is characterized by decomposing the signal to be analyzed into multi-scale 
coefficients, high frequency component is described by coefficients on small scale and low 
frequency component is described by coefficients on large scale [Gerolymos et al (2009), 
Mallat (1999)]. In this way, shock wave may be maintained and the numerical oscillation 
around the shock wave may be removed after some special treatment for wavelet coefficients. 
 
In this paper, we propose a dual wavelet shrinkage procedure to suppress numerical 
oscillation from a straightforward numerical scheme, named localized differential quadrature 
(LDQ) method, to calculate shock wave problem. LDQ, proposed by Zong [2002], is a high 
order accurate numerical method The LDQ method was used to solve Riemann problem 
[Mahdavi et al (2012)]. However, high oscillation emerged. A dual wavelet transformation is 
then applied to process the highly oscillatory results. Three shock wave propagation 
problems governed by shallow water equations and Euler equations are presented for 
demonstration. The results are compared to their analytical solutions and very well agreement 
is achieved. 
 
2. A brief introduction of LDQ 

 
Hereinafter, only the main formulas of LDQ are introduced. Details of LDQ and their 
applications can be referred to Zong [2009]. The first step to LDQ method is to locate the 
neighborhood of a grid point of interest xi. We use ril=|xi-xl|,i,l=1,…,N  to denote the 
distance between any two points in the solution domain. We find the permutation 

s(1),s(2),…,s(N) to satisfy (1) (2) ( )...is is is Nr r r≤ ≤ .                                                                                                         

It is clear that the points falling in the neighborhood of i-th point xi are the first m points. 
Denoting Si=(s(1),s(2),…,s(m)),i=1,…,N, and then Si defines the neighborhood of the grid 
point of interest. We may get the first and second spatial derivatives at point xi of function 
f(x) by its neighborhood Si as following: 
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Multi-dimensional formulas share the same form as in one dimensional because they are 
independent in each direction. 

 
3. A dual wavelet shrinkage procedure 

 
Wavelet analysis, introduced by Grossmann & Morlet in the early 1980s, has significantly 
impacted the signal and image processing [Mallat (1999)]and numerical solving in nonlinear 
partial differential equations (see Refs. Beylkin [1992], Zong et al [2010]，Vasilyev and 
Paolucci [1996], Vasilyev et al  [1995] )as well as its application on turbulence(see Refs. 
Farge et al [1999], Farge and Kaiser [2001], Goldstein and Vasilyev [2004], Schneider et al 
[1997], Zong et al [2010] ). Wavelet provides compactly supported, orthogonal or 
bi-orthogonal basis functions with adjustable smoothness. Due to the compactly supported 
basis, wavelet coefficients contain local structure information, hence wavelet analysis is a 
proper mathematical tool to process signal with local structure. Further more, wavelet 
analysis enables us to obtain multi-scale information of the analyzed signal by introducing 
scale dilating.  
 
Vanishing moment is an important property of wavelet analysis, which is directly related to 
wavelet basis functions’ smoothness. Wavelet function is called M order vanishing moment 
if the following relation is satisfied:  
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Daubechies wavelet, one of the most important orthogonal wavelet categories, is widely used 
in many applications [Daubechies (1988)].The function’s smoothness of Daubechies wavelet 
is adjustable by the vanishing moment order M. Let sup φ=[0,2M-1] be scaling function and 
sup ψ=[-M+1,M] be wavelet function’s supported range. For example, the first or second 
order of Daubechies wavelet, denoted as DB1 or DB2, are shown in Fig.1.  
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(a)                                    (b) 
Fig.1 Daubechies wavelet functions of DB1(a) and DB2(b). 



  
 

Wavelet bases provide us a multi-scale resolution to express function. We assume function 
f(x)  can be totally approached on the finest scaling index J  , i.e. , ,( )J k J kc f x=  and then it 
can be decomposed in terms of the sum of a series of wavelet bases functions  
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The coefficients are obtained by wavelet decomposition formula: 
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For function with most part is well smooth, most wavelet coefficients will be small. 
Consequently, we can retain a good approximation even discarding a large number of 
wavelets with small coefficients. More precisely, if we rewrite the approximation as a sum of 
two terms 
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Where ε  is a prescribed particular threshold and 
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From Vasilyev and Paolucci [1996], the approximation error caused by the significant 
wavelets, whose coefficient amplitude is above threshold ε  , is bounded by following 
restriction:  

1( ) ( )J J
df x f x Cε ε≥− ≤                      (14) 

and the number of significant wavelet coefficient K is bounded by ε     and wavelet’s 
vanishing moment N as  
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C1, C2  in Eqs.( 14) and (15) depend on wavelet vanishing moment and function 
f(x) .Threshold has two effects: making approximation adaptively and controlling the 
approximation error globally. The similar situation can be simple extended to 
multi-dimensional space by tensor product.  
 
For the signal to be analyzed including unknown noise and unknown smoothness structures, 



  
how to remove the noise and keep the unknown structure is a complicated problem. Donoho 
and Johnstone proposed a wavelet shrinkage procedure to extract the structure from noisy 
sampled data [Donoho and Johnstone (1995)]. We view numerical oscillation as the noise, 
discontinuity such as shock and rarefaction wave as the signal’s structure. Based on this 
understanding, the wavelet shrinkage procedure is applied to suppress the highly numerical 
oscillation obtained from the LDQ Method. Indeed, wavelet shrinkage procedure can extract 
the unknown smoothness structures contaminated by heavy noise. Donoho and Johnstone 
also addressed that the reconstruction is essentially as smooth as the mother wavelet [Donoho 
and Johnstone (1995)].This indicates that the reconstructed signal’s smoothness is closely 
related to the adopted wavelet basis functions’ smoothness. The reconstructed signal is 
locally similar as the adopted wavelet basis function, so the optimal wavelet basis should be 
in the same order smoothness as the real physical signal. Based on the consideration, we 
propose a dual wavelet shrinkage procedure using DB1 and DB2 for suppressing numerical 
oscillation obtained from LDQ method. DB1 and DB2 are respectively suitable for shock and 
rarefaction wave’s reconstruction, because DB1 is a sharp jump function and DB2 is a 
function with one-order smoothness. The dual wavelet shrinkage procedure is proposed as 
followings. 
 
1) Decomposing the numerical result with highly oscillation obtained from LDQ method 

via the discrete wavelet transform using DB1 by Mallat algorithm [Goldstein and 
Vasilyev (2004)], then the wavelet coefficients dj,k is obtained, where j0≤j≤J,1≤k≤2j, 
j is scale index,  j0, J represent the largest and smallest scale, respectively. 

2) Setting 2ln( ) /j j j jt N Nσ=  be the threshold value at scale j, where jσ  is the standard 
deviation of coefficients dj,k, and Nj is the number of wavelet coefficients dj,k, i.e. Nj =2j. 
A threshold is assigned to each dyadic resolution level for threshold estimates, which is 
adaptive. 

3) Thresholding wavelet coefficients dj,k to get revised coefficients � ,j kd  by following 
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4) Reconstructing de-noisy data via the wavelet reconstruction transform using the revised 
wavelet coefficients � ,j kd . 

5) Repeating the above procedure using DB1. At next time step, the dual wavelet shrinkage 
procedure is complemented again.    

 
The additional of this computational effort of the overall procedure is only of order N·log(N) 
as a function of sample size N by Mallat algorithm, which is a fast transform similar as fast 
Fourier transform, brings little extra computation.  
 
4. Numerical tests 

4.1 One-dimensional dam break flow 

One-dimensional shallow water equations (SWEs) is a typical Riemann problem [Stoker 
(1986)], 
 

( ) 0t xU F U+ =                                (17) 



  

2 2, ( )
/ 2

h hu
U F U

hu hu gh
   

= =   +   
                       (18) 

 
SWEs describe the flow at time 0t ≥  at point ,x  where ( , )h x t is the water depth, ( , )u x t  
is the average horizontal velocity and g the gravitational acceleration. A wide variety of 
physical phenomena are governed by the SWEs, such as tidal flows in coastal water regions, 
bore wave propagation, flood waves in rivers, surges, dam-break modeling and so on [Delis 
and Katsaounis (2003)]. Here we use SWEs to model dam-break problem in a channel of 
length L=2000 m and the initial condition is 
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The dam collapses at t =0 and the resulting bow consists of a shock wave traveling 
downstream and a rarefaction wave traveling upstream. LDQ is applied to the calculation of 
shock wave tube. However, the viscosity is also included to avoid numerical oscillation in the 
article [Zhao et al (2011)]. In this research, the LDQ method is employed for spatial 
derivative calculation, where m=5. Uniformly spaced nodes N=256 are set in the channel 
length. Four-order Runge-Kutta method with time step Δt=0.05s is used for time integration.  
In order to check the dual wavelet shrinkage procedure’s effect, results without wavelet 
shrinkage procedure at time t=25s and t=50s are shown in Fig.2. Highly numerical oscillatory 
results are obtained only by LDQ method, especially after the shock wave front. Further more, 
the oscillation develops along with the time. Real physical solutions are hidden in the highly 
oscillatory numerical results. The task of the wavelet shrinkage procedure is to reconstruct 
them by suppressing the numerical oscillation adaptively.  
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(a)                               (b) 

Fig.2 Numerical result of water depth only by LDQ at t=25s (a) and t=50s (b), 
respectively 

 
The dual wavelet shrinkage procedure is subsequently implemented after LDQ method to 
remove the numerical oscillation. Fig.3 shows the numerical result of water depth along the 
channel at time t=25s and t=50s, which is also compared to the analytical result referred to 
Stoker [1986]. The highly numerical oscillation is removed out by this dual procedure. 
Further more, it remains the sharp gradient structure near the shock wave front 
simultaneously. However, small disturbance is introduced in the  domain of rarefaction 
wave, which could be ignored.    
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(a)                                       (b) 

Fig.3 Comparison of numerical result for water depth using the dual wavelet shrinkage 
procedure and analytical result at time t=25s (a) and t=50s (b), respectively 

 
In order to examine the dual wavelet shrinkage’s superiority over single wavelet shrinkage, 
we use only DB1 and DB2 in the procedure, respectively. Fig.4 is the result of water depth 
only using DB2 at time t=50s. As shown in Fig.4(a), DB2 can extract the rarefaction wave’s 
structure well. However, DB2 introduces obvious disturbance with similar shape as DB2 
function in the solution. Besides, DB2 makes the shock front excessively smooth, which does 
not comply with the physical truth. The result obtained from the procedure only using DB1 is 
shown in Fig.4(b). DB1 can reconstruct shock wave front with sharp gradient structure. But it 
also introduces many stepped shape error in rarefaction wave and before shock wave front. 
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(a)                                    (b) 
Fig.4 Water depth along the channel only with DB2 (a) and DB1(b) at t=50s, 

respectively 
 

The dual procedure combines the respective advantages of DB1 and DB2. DB1 is a 
discontinuity function, which is the best candidate to capture the shock wave front. DB2, the 
second order vanishing moment function, is the optimal function to reconstruct the 
rarefaction wave. The dual wavelet procedure using DB1 and DB2 is a proper combination 
for processing highly numerical oscillatory results obtained from LDQ method in Riemann 
problem with shock wave.  

4.2  One-dimensional shock tube problem  

The Euler equations for one-dimensional unsteady ideal gas flow without heat conduction are 



  
given in conservation form.  
 

( ) 0u
t x
ρ ρ∂ ∂
+ =

∂ ∂
                       (20) 

2( ) ( ) 0u u p
t x
ρ ρ∂ ∂

+ + =
∂ ∂

                       (21) 

( ( )) 0E u E p
t x

∂ ∂
+ + =

∂ ∂
                      (22) 

 
where ρ ,u , E , p  is gas’ density, velocity, energy per unit volume and pressure, respectively. 
We need one more equation, i.e the state equation, to close the system. 
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Let ratio of specific heats γ=1.4 and spatial range 15 15m x m− ≤ ≤ . Initial conditions are 
specified as followings: 
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This is a shock tube problem. Setting uniformly spaced nodes with number N=512 in the tube 
length and m=5 in LDQ method for spatial derivatives’ calculation. Fourth-order 
Runge-Kutta method is used for time integration with time step Δt=0.005s. 
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Fig. 5 Profiles of numerical density, velocity and energy of unit mass only using LDQ at 

time t=5s 
 

In order to reveal the effect of wavelet shrinkage procedure, the numerical results obtained 
from pure LDQ method is shown in Fig. 5. Intense oscillation appears as in Fig.2. 
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Fig.6 Comparison of numerical density, velocity and pressure de-noised by the dual 
wavelet shrinkage procedure and the corresponding analytical solutions at time t=5s 

 
After applying the dual wavelet shrinkage procedure to remove the numerical oscillation, the 
gas’s density, velocity and pressure at time t=5s are shown in Fig.6, also including the 
analytical solutions. As shown in Fig.6, numerical results are very close to their analytical 
counterparts as referred by Toro [1999]. 

4.3 Two-dimensional shock wave propagation  

 
In order to confirm the procedure’s effect in two-dimensional shock wave’s computation, we 
consider two-dimensional Euler equations as following. 
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The initial conditions are specified as below: 
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Similar calculation parameters are set as in one-dimensional case, i.e. uniformly 512 ×512 
nodes in x and y direction respectively; m=5 in LDQ method; and fourth-order Runge-Kutta 
method for time with time step Δt=0.005s. 
 
A pressure contour at time t=3.75s  is shown in Fig.7. Shock wave spreads outward with 
uniform speed and numerical results keep sharp interface. Pressure keeps the same at the two 



  
sides of the contact discontinuity and varies slowly in rarefaction wave region whose position 
can be seen obviously in Fig.8. It can be clearly seen that the wave spreads uniformly and 
symmetrically. However, slightly distorted deformation is introduced in radial direction by 
the effects of the grid which cannot represent a circle by square grid. 
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Fig.7 Pressure contour at t=3.75s 

 
In order to get a clear version of density and pressure, we display their profiles at position of 
y=0 at time t=3.75s in Fig.8. Symmetry is maintained in the calculation and results with 
non-oscillation are obtained.  
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Fig.8 Profiles of numerical density, velocity components and pressure at position y=0 at 

t=3.75s 
 
This numerical model indicates that the dual wavelet shrinkage procedure can be extended to 
2D Riemann problem with shock wave and the effect on numerical suppressing is as 
promising as in 1D case. 
 
5. Conclusion 
 
A dual wavelet shrinkage procedure is proposed to suppress the numerical oscillation for 
nonlinear hyperbolic equations, known as Riemann problem with shock wave in ideal fluid 
dynamics in this paper. The dual procedure combines the advantage of DB1 and DB2. DB1 is 
totally discontinuous, which is natural to capture the shock wave front. DB2, the second 
order vanishing moment function, is the optimal function to reconstruct the rarefaction wave. 
Based on these coincides, adaptive threshold value is applied to remove the numerical 
oscillation obtained from LDQ method.  



  
 
Three numerical tests, i.e. one-dimensional water dam breaking problem and 
one/two-dimensional air shock wave propagating problems, are used to verify the procedure’s 
performance. High quality results are obtained both in capturing discontinuity and 
suppressing the numerical oscillation. It’s demonstrated that the dual wavelet procedure is a 
proper combination for processing highly numerical oscillation in Riemann problem with 
shock wave. Compared with the well known Riemann solvers and related complicated 
numerical schemes, LDQ method is qualified to solve shock wave problem with the aid of 
the dual wavelet shrinkage procedure.  
 
The method proposed in this article could be applied into ship hydrodynamics numerical 
methods, such as fluid structure interaction (FSI). Due to most FSI analysis employ the 
iterative scheme that solvers the solid and fluid problems alternately at each time step, which 
could accumulate much numerical error and eventually could lead to convergence 
difficulties.  
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