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Abstract 

We propose a novel procedure to improve the solution obtained by perturbation methods for 
analyzing the solutions of strongly nonlinear systems. The multiple-scales method, one of the 
perturbation method, is widely used in many areas. However, multiple-scales method fails in 
analyzing the solutions of oscillators if the oscillator nonlinearity is strong. We apply the 
proposed procedure to improve the multiple-scales method to obtain the optimum solution of 
the forced oscillator with strongly nonlinear restoring and inertial forces. The solutions 
obtained from multiple-scales method and the proposed method are examined by the 
numerical solution obtained from 4th-order Runge-Kutta method. The results show that the 
proposed method is effective for the oscillators with nonlinear restoring force as well as 
nonlinear inertial force even if the nonlinearities are strong. Numerical results and comparison 
show that the proposed method can improve the solution a lot in comparison to the solution 
obtained by conventional multiple-scales method. 

Keywords: Perturbation method; Strong nonlinearity; Nonlinear restoring force; Nonlinear 
inertial force; Forced Vibration. 

Introduction 

Strongly nonlinear systems can be found in many structural applications, such as the 
vibrations of mass-spring system, cable, cantilever with large deflections, etc [1]. Though 
numerical methods have been widely applied for numerical solutions of nonlinear vibration 
problems, the solutions of some strongly nonlinear oscillators can still not be completely 
obtained. Therefore, the studies on the methods for approximate analytical solutions of 
strongly nonlinear oscillators are attractive. Perturbation methods have been used to obtain the 
approximate analytical solution for a long time. However, the assumption for perturbation 
methods limits their applications. Perturbation methods are invalid if the nonlinearity within 
the system is strong because of the assumption of small perturbation parameter in the system. 
In order to analyze the vibration of oscillator with strong nonlinearity, some methods have 
been developed and studied in recent years. They can be categorized as (1) harmonic balance 
method, (2) variational iteration method, (3) linearized perturbation method, (4) parameter 
expansion perturbation method, (5) various modified Lindstedt-Poincaré methods and (6) 
homotopy analysis method. Each of these methods can be applied for obtaining the 
approximate solutions of a wide class of nonlinear oscillators without introducing a small 
perturbation parameter as classical perturbation methods do [2]. Wu and Lim proposed a 
method by combining the linearization of equation of motion and harmonic balance method to 
analyze the free vibration of an ordinary differential equation with odd nonlinear restoring 
force [3]. Cheung and Iu applied the harmonic balance method to analyze the forced vibration 
of a dynamical system with quadratic and cubic nonlinearities [4]. Hu applied a modified 
iteration procedure to a quadratic nonlinear oscillator (QNO) and obtained an improved 
solution in comparison to those obtained by the first-order harmonic balance method [5]. 



Shakeri and Dehghan adopted the variational iteration method to solve the Klein-Gordon 
equation and it shows that the solution converges fast [6]. Marinca and Herisanu proposed a 
perturbation technique by combining the iteration methods and the solution obtained by this 
new method agrees well with exact solution [7]. The linearized perturbation technique is 
applied to a Duffing oscillator with 5th-order nonlinearity [8]. Xu applied He's parameter-
expanding method (PEM) to determine the limit cycles of the strongly nonlinear oscillators 
[9]. With this method, a strongly nonlinear oscillator with large perturbation parameter is 
transformed into an oscillator with small parameter. Chen et al. proposed a modified 
Lindstedt-Poincaré method for the analytical approximate solution of limit cycles in three-
dimensional nonlinear autonomous dynamical systems [10]. In 2009, Pakdemirli proposed a 
method named multiple-scales Lindstedt-Poincaré (MSLP) method by combining the 
multiple-scales (MS) method and Lindstedt-Poincaré (LP) method. This method has been 
applied to analyze the free vibration of three oscillators which are the damped linear oscillator, 
undamped Duffing oscillator and damped Duffing oscillator [11]. Later, the MSLP method 
was extended to analyze the forced vibration of strongly nonlinear Duffing oscillator [12]. 
Liao proposed an optimal homotopy analysis method by introducing a two-parameter family 
equation to find the fastest convergence solution to the Blasius boundary-layer flows problem 
in fluid mechanics [13]. Razzak and Molla combined the general Struble’s technique and 
homotopy perturbation method to analyze damped and driven strongly nonlinearDuffing 
oscillator and strongly nonlinear van der Pol oscillator with damping [14]. 
Since the validity condition for perturbation method to give a valid solution is that the ratio of 
the amplitude of )( 1O solution and that of )( 0O solution is much less than unity [15], the 
method proposed in this paper is based on the objective that the ratio of the amplitude of 

)( 1O solution and that of )( 0O solution is minimized. To do so, an equivalent oscillator is 
formulated by splitting the parameters in nonlinear restoring force and nonlinear inertial force. 
The introduced unknown nonlinearity parameters can be determined with the objective that 
the ratio of the amplitude of )( 1O solution and that of )( 0O solution is minimized. An 
oscillator is analyzed by multiple-scales (MS) method and the proposed method which is 
named parameter-split-multiple-scales (PSMS) method. The solutions obtained by these 
methods are compared to the numerical solutions obtained by the 4th-order Runge-Kutta 
method. The accuracy and the effectiveness of PSMS method are examined by numerical 
analysis.   

Procedures for optimizing the solution obtained by the multiple-scales method 

Considering the following nonlinear oscillator 

       2 2 2
0 , , cosy c y y g y y y F t                (1) 

where y  is displacement, t  is time, c  is damping coefficient, 0  is the natural frequency of 

the oscillator,   is perturbation parameter, F  is excitation amplitude,   is excitation 
frequency and  , ,g y y y   is a nonlinear function and given as 

       , ,

0 0 0

, ,
n m l

i j k i j k

i j k

g y y y y y y
  

         (2) 

where  , ,i j k  are nonlinear parameters which reflect the degrees of nonlinearity and 

2i j k   . The nonlinear parameters  , ,i j k  are split and expressed by two terms as 

follows. 



         , , , , , ,
1 2

i j k i j k i j k          (3) 

Then, Eq. (1) is written as 

         2 2 2 2
0 1 2, , , , cosy c y y g y y y g y y y F t                    (4) 
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, ,       , ,
n m l n m l

i j k i j ki j k i j k

i j k i j k

g y y y y y y g y y y y y y 
     

               (5) 

In the analysis with perturbation method, the response of the oscillator is assumed to be 

     2 3
0 1 2y y y y O           (6) 

Substituting Eq. (7) into Eq. (4) leads to  
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Equating the coefficients of s (s=0, 1, 2) to zero and eliminating the secular terms one can 
obtain an approximate steady-state response to the oscillator in the form of 

         1 2cos cos 3 cos 5y A t Y t Y t                      (8) 

in which A  is the steady-state response amplitude,   is the steady-state phase angle, 1Y  and 

2Y  are the amplitudes of )( 1O solution and )( 2O solution, respectively. They are also the 

functions of    1,1,0 , ,
1 2, , n m l  . Then the values of  , ,

1
i j k  and  , ,

2
i j k  are determined by a 

numerical iteration procedure. 

Damped and driven Duffing equation with nonlinear inertial force 

Consider a damped and driven Duffing equation with nonlinear inertial force as follows. 

     2 2 2 2 3 2
02 cos              q u q q qq q q q F t      (9) 

which can find its applications in the nonlinear vibrations of cantilever with large deflection. 
The nonlinear parameter   and   are split by 

    1 2          (10) 

    1 2          (11) 

The oscillator response is expressed as 

           2 3
0 0 1 2 1 0 1 2 2 0 1 2, , , , , ,     q q T T T q T T T q T T T O      (12) 

where 
0
T , 

1
T  and 

2
T  are different time scales with multiple-scales method which are given by 
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By chain rule, the operators of time derivatives are 
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where /
n n

D T    and 2 2 2/
n n

D T   . Substituting Eq. (10)-(15) into Eq. (9) and setting 

the coefficients of  0,1,2m m   to zero lead to the following equations. 
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The solution of the  0O   equation is 

       0 0 0 0

0 1 2 1 2
, ,i T i Tq C T T e C T T e        (19) 

where C  is a function of time scales 
1
T  and 

2
T  which can be determined by omitting the 

secular terms in the  1O   equation in the following. Substituting Eq. (19) into the righthand 

side of the  1O   equation and eliminating the secular terms yield 

      2 2 2
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2 3 2 0i D C C C C C           (20) 

and 
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in which 
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Substituting the expressions of 
0

q  and 
1

q  into the  2O   equation, eliminating the secular 

terms, and using the expression 2

0
      where   is a detuning parameter that can be 

determined if   is given, it gives 
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in which 
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 2
D C  is selected to eliminate the secular terms and expressed as 
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The time derivative of C  can be expressed as 

         2 3
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.

dC
D C D C O

dt
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The polar form of C  is assumed to be 

    
1

,
2

ibC Ae      (28) 

where A  is the response amplitude and b  is the phase of oscillator response. Substituting Eqs. 
(20), (26) and (28) into Eq. (27) and separating the real and imaginary parts yield 
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where 
2
T b   . 

For steady state, A  and   are equal to zero. Then the frequency response curve can be 
obtained by eliminating   and   in Eq. (30). The relation between the excitation frequency 
and the response amplitude at steady state can be obtained to be 

    

2 2 4 2 2 4 2 4 2 2

1 0 1 1 0 1 1 1
0 3

0 0 0

2 2 2 2 2 2 22
2 0 2 0

2

0 0

3 9 9 15

4 8 64 64 256

3 4
     - 1 .

4 8 2

A A A A A

A A A uF

A F

            


  

     
 

      

 
     (31) 

The approximate response of the oscillator can be expressed as 



          1 2
cos cos 3 cos 5 ,q A t X t X t                      (32) 

in which 
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Due to the relations given by Eqs. (10) and (11), two of the parameters 
1

 , 
2

 , 
1
  and 

2
  are 

independent if the values of   and   are given. Consider the parameters 
1

  and 
1
  as 

independent parameters. In order get the optimum solution, the values of 
1

  and 
1
  are 

determined such that the absolute value of 
1

X  is minimized.  
 

Case 1: 0   

When 0  , the considered oscillator can be regarded as a damped and driven Duffing 
oscillator which can be found in many applications such as the forced vibrations of pendulum, 
isolator, electrical circuit [1].  

The frequency response curves obtained by the proposed method and the multiple-scales 
method are compared to the frequency response curve obtained by the fourth-order Runge-
Kutta method to examine for the effectiveness of the methods. 

The parameters of nonlinear oscillators are listed in Table 1. 

Table 1. Oscillator parameters 

Oscillator                
0

         u                             F  

 
1               0.1        1         2          0         10          30 
2               0.1        1         2          0         0.1         30 
3               0.1        1         2          0         10          30 

The frequency response curves of oscillators 1, 2 and 3, obtained by the proposed method, the 
multiple-scales method and the numerical simulation are presented in Figs. 1-3, respectively. 

 

Case 2: 0   

When 0  , the considered oscillator can be regarded as a damped and driven Duffing 

oscillator with nonlinear inertial forces ( 2q q  and 2qq ) which can be found in the forced 
vibrations of beams [16].  

The frequency response curves obtained by the proposed method and the multiple-scales 
method are compared to the frequency response curve obtained by the fourth-order Runge-
Kutta method to examine the effectiveness of the methods. 

The parameters of the nonlinear oscillators are listed in Table 2. 



Table 2. Oscillator parameters 

Oscillator                
0

         u                             F  

 
4               0.1        1         2        0.1        10          30 
5               0.1        1         2         2          0.1         30 
6               0.1        1         2         2          10          30 

The frequency response curves of oscillators 4, 5 and 6, obtained by the proposed method, the 
multiple-scales method and the numerical simulation are presented in Figs. 4-6, respectively. 

Conclusions 

A novel method named parameter-split-multiple-scales method is proposed to improve the 
solution obtained by perturbation method based on the objective that the ratio of the 
amplitude of )( 1O solution and that of )( 0O solution is minimized. The forced vibration of 
an oscillator with strongly nonlinear restoring and inertial forces is analyzed by the proposed 
PSMS method, MS method and 4th-order Runge-Kutta method. We have first studied the case 
that 0   to examine the validity of the proposed method when nonlinear restoring force is 
large. After that, we have studied the oscillator with nonlinear restoring and inertial forces 
( 0  ). The results show that the proposed method works for the oscillators with strongly 
nonlinear restoring force and/or strongly nonlinear inertial force. It can improve make the 
solutions improved a lot compared to the conventional multiple scales method. 
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Figure 1.  FRCs of oscillator 1 by the proposed method, the MS method and numerical 

simulation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  FRCs of oscillator 2 by the proposed method, the MS method and numerical 

simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  FRCs of oscillator 3 by the proposed method, the MS method and numerical 

simulation. 
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Figure 4.  FRCs of oscillator 4 by the proposed method, the MS method and numerical 

simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  FRCs of oscillator 5 by the proposed method, the MS method and numerical 

simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  FRCs of oscillator 6 by the proposed method, the MS method and numerical 

simulation. 
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