
 

Wave propagation in an elastic waveguide: application of the Fourier 

transform and finite element methods 

†E. Kirillova¹, W.Seemann2, and *M. Shevtsova1,2 

1Department of Civil Engineering, RheinMain University of Applied Sciences, Germany. 
2Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Germany 

*Presenting author: maria.shevtsova@hs-rm.de  
†Corresponding author: evgenia.kirillova@hs-rm.de 

Keywords: Fourier transform, displacement field, Finite Element Modeling (FEM) 

Introduction 
Running elastic waves are widely used in the monitoring of various industrial objects for 
identification of damages. Piezoceramic actuators are usually used to generate high-frequency 
waves for non-destructive testing. Simulation of the elastic wave propagation in mechanical 
structures is an important task for the development of non-destructive testing and structural 
condition monitoring of composite materials, which are increasingly used in such fields as 
aircraft manufacturing, chemical industry, pipeline systems, etc.  

In presented study vibrations of an isotropic waveguide that occupies the volume 
( ){ }0;,,, ≤≤−∞<<∞−= zhyxzyxD  (see Fig. 1) were considered. Lame's equations for 

the steady-state harmonic vibration of the considered waveguide have the form 

02 =+ uu ρωL      (1) 

where u  is the displacement field, ρ  is the density and ω  is the angular vibration frequency. 

The bottom surface is free of stress  

0=−= hzτ .       (2) 

The aim of this study is to determine the displacement field u  caused by the harmonic 
vibrations of a piezoelectric plate bonded on the upper surface of the considered strip.  
In order to calculate the unknown displacement field both Fourier transform and finite 
element (FE) methods were applied. 

 
Figure 1. The scheme of the loaded structure 

 

The Fourier transform by x  was applied to Eqs. (1)-(2) with the parameter α , and the 
solution of the initial problem was written as follows  
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where K  and Q  are the the Fourier transforms of the Green’s matrix and of the load. The 
integration contour Γ  in accordance with the limiting absorption principle go along the real 
axis, deviating when traversing the poles of Fourier transform K  of the Green's matrix k . 
The contact stresses ( )xq  occurring under the piezoelectric actuator were described by means 
of a simplified model, which is commonly used for engineering calculations. According to 
this model, the action of the actuator has been approximated by two delta-functions applied at 
the boundary points ax ±=  of the contact area  

( ) ( )( )axaxC
zxz +−−=
=

δδτ
0

,    (4) 

where ( )∫
−
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dxxqC  is a coefficient, which represents the amplitude of the applied load.  

Finite element model of the considered problem was formulated and simulated in FE package 
Comsol Multiphysics. The steel layer of the thickness mh 01.0=  (in Fig.1) was loaded 
according to the Eq. 4, where ma 01.0= . Dimensionless angular frequencies were calculated 
according to the formula 

schf r /2πω ⋅⋅= ,     (5) 

where ρ/Gcs =  is the transverse or S-wave velocity, ρ  is the density, G  is the shear 
modulus, ν  is the Poisson's ratio, and rf  is the dimensional frequency in Hz. In order to 
simulate the infinite layer, three additional regions of finite length 3,2,1,1.0 == imli

 were 
placed on the both edges of the finite region of the length ml 1= . The additional regions had 
the same elastic properties as the considered layer, but their damping coefficients were taken 
to be nonzero in order to save the acoustic impedances of the regions unchanged and make the 
waves to smoothly attenuate when they move to the ends of the considered region. Thus there 
were no reflected waves appeared in the layer. Damping coefficients were chosen empirically: 
a wave was directed into the layer, after that the check was performed in order to ensure that 
there were no displacement discontinuities at the boundaries between the regions. Since the 
impedances of all the regions remain the same, the wavelength did not change during the 
propagation in the side regions. Characteristics of all the subdomains (Fig.1) are described in 
the Table 1. 

Table 1. Elastic and damping properties  

Subdomain 
Density, 

3/ mkg  
Young’s 
modulus, 

GPa  

Poisson’s 
ratio 

Mass damping 
parameter, s/1  

Stiffness damping 
parameter, s  

S  7480 20 28.0  410001.0 −×  410001.0 −×  

1S  7480 20 28.0  41001.0 −×  41001.0 −×  

2S  7480 20 28.0  410025.0 −×  410025.0 −×  

3S  7480 20 28.0  4105.0 −×  4105.0 −×  



In Fig.2, the absolute values of the displacement fields calculated by means of finite element 
method and by inverse Fourier transform are presented at different vibration frequencies: 

1.1=ω  (a) and 4=ω  (b). It can be seen (Fig.2, a) that the compared displacements are in a 
better agreement for lower vibration frequency. In this case, the presented results are 
comparable both in the near-field and on the distance from the oscillation source. The 
displacements corresponding to higher frequencies (Fig.2, b) distinguish stronger in the 
vicinity of the actuator, but they show the good agreement on distance from the oscillation 
source and almost coincide in the far field.  
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Figure 2. Absolute values of displacement fields calculated by means of inverse Fourier 
transform and FEM at different frequencies: a) 1.1=ω  and b) 4=ω  
 
Analysis of the displacement fields obtained by means of the aforementioned methods 
showed the good results agreement in far field, when the displacement amplitudes differ 
significantly in the vicinity of the contact area. It was also found that the efficiency of the 
considered numerical methods is reduced with increasing vibration frequency.  
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