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Abstract 
We consider a class of mixed boundary value problems of elasticity theory for the junction of 
two rectangular horizontal semi-strips of the same width with different boundary conditions 
on their long sides. On the junction of semi-strips, the continuity conditions of solutions or the 
discontinuity of displacements and stresses can be known.  
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Introduction 

In the general case, the solutions of such problems are represented as series in Papkovich–
Fadle eigenfunctions, in particular as series in trigonometric functions. The unknown 
expansion coefficients are determined from the conditions on the junction of semi-strips. 
However, since two complete and minimal systems of functions (for example, trigonometric 
ones) take part in the solutions, their union on the junction will not be minimal. Therefore, it 
is impossible to construct a system of functions that is biorthogonal to this union. Hence, it is 
impossible to find a closed form solution. The main idea is to form a minimal system of 
functions, then to construct biorthogonal systems of functions and determine the unknown 
expansion coefficients with their help. 

Statement of the problem and its solving 

Let us consider the horizontal strip { :| | 1,| | }y xΠ ≤ < ∞  with the following boundary 
conditions: 
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where u  and v  are displacements along the x - and y -axes respectively. 
 
Suppose that 2( ) ( , )p x L∈ −∞ ∞  is a certain continuation of ( )p x+  to the whole real axis. We 
will assume that the null boundary functions are continued by zero. The solutions in the left 
semi-strip { : 0,| | 1}x y−Π ≤ ≤  and in the right semi-strip { : 0,| | 1}x y+Π ≥ ≤  can be 
represented in the form of Fourier series and integrals [1][2]. The corresponding formulas of 
the displacements and the stresses in the semi-strips Π  are as follows: 
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In formulas (2) and (3) the following notations are introduced: G  is the shear modulus, ν  is 
the Poisson ratio, kq kπ= , (2 1) / 2kp k π= − − , ( , ) ( , )U x y Gu x y=  and ( , ) ( , )V x y Gv x y= . 
The superscript   indicates the quantities corresponding to the solution in terms of Fourier 
integrals for the infinite strip under the boundary conditions ( , 1) 0U x ± = , ( , 1) ( )y x p xσ ± = . 
This solution can be found easily, for example: 
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[ ]( )p tℑ  is the Fourier transform of the function ( )p x . 
 
Let ( )p x p const+ = =  and ( )p x p= . In this case the solution written in terms of Fourier 
integrals has the form 

 1( , ) 0, ( , ) (1 ) , ( . ) , ( , ) 0
2 x xyU x y V x y py x y p x yν σ ν τ= = − = =    . (5) 

The required coefficients ,k kA B  and ,k ka b  must be found from the continuity conditions of 
the displacements (0, )U y±  and (0, )V y±  and the stresses (0, )x yσ ±  and (0, )xy yτ ±  on the 
junction of the semi-strips. As a result, we obtain four functional equations containing the 
four complete minimal systems of functions {1,cos } {cos }k kq y p y∪  and 
{sin } {sin }k kq y p y∪ ( 1)k ≥ . However, these unions are not minimal. It follows that the 
unknown coefficients cannot exactly be found from these equations. We must first eliminate 
the unnecessary functions from these equations. In order to do that, we consider the two 
functions analytic in the semi-strips  : 
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By expanding the equations (0, ) (0, )y y+ −Φ = Φ  and (0, ) (0, )y y+ −Ψ = Ψ , we obtain the 
system of two functional equations 
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The functions ( )yΦ  and ( )yΨ  are determined according to (6) for the variables indicated 
by the degree superscript. In accordance with (5), we have 

( ) (1 ) / 2, ( )y pi y piνΦ = − Ψ =  . 

Now we introduce the new notations: 
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Theorem 1. The function system 1{ }ki y
ke ω ∞
=  is complete and minimal in 2 ( , )L −∞ ∞ . 

 
Theorem 2. There exist a unique function system 1{ ( )}k kyψ ∞

=  biorthogonal to 1{ }ki y
ke ω ∞
= . These 

functions are given by the formulas 
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We multiply Eqs. (7) by ( )k yψ  and integrate the result over [ 1,1]−  for each 1k ≥ , thus 
obtaining the system of two algebraic equations for the unknowns kC  and kD . Solving it and 
writing the result in the original notations (8), we have 
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By introducing the function 
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we can write out the final formulas for the stresses: 
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As an illustration, Fig. 1 shows the distribution of the stresses ( 0.05, )x yσ ± ± . 

 
Figure 1. Distribution of the stresses ( 0.05, )x yσ ± ±  

 

Conclusions 

It can be shown that the biorthogonal functions have a singularity of the type  1/2
1 y


 , 

therefore, the stresses at these points will also have the same singularity. 
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