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Abstract
The trapezoidal rule for the computation of supersingular integrals on circle is discussed, and
the asymptotic expansion of error function is obtained. A series to approach the singular point
is constructed. The extrapolation algorithm is presented and the convergence rate is proved.
Some numerical results are also reported to confirm the theoretical results and show the
efficiency of the algorithms.
Keywords: Supersingular integral; Extrapolation method; Composite trapezoidal rule;
Posteriori estimate

1.Introduction

Accurate calculation of boundary element methods(BEM) arising in boundary integral
equations has been a subject of intensive research in recent years. The formulation of certain
classes of boundary value problems in terms of supersingular integral equations:

(1)

have drawn lots of interests. In the literature different definitions of singular integrals are
found which can be shown to be the same. We mention the following one

(2)
where denotes a supersingualr integral and s the singular point. Here the supersingular
integral is one order higher singularity than hypersingular integral.

One of the major problems arising from boundary element methods is how to evaluate such
supersingular integral efficiently. For the case , numerous work has been devoted to
developing efficient quadrature formulas for hypersingular integral such as the Gaussian
method [7,8], the Newton-Cotes method [15,22-25], the transformation method [3,5] and
some other methods [4,10,19]Because of the high-order singularity of the kernels, the rules
for Hadamard finite-part integrals (including hypersingular and supersingular integrals) are
less accurate than their counterparts for Riemann integrals. Newton-Cotes rules for evaluating
hypersingular integrals were firstly suggested by Linz [15]. The superconvergence
phenomenon of trapezoidal rule and Simpson's rule for hypersingular integrals was found in
[22,24], which showed that one order higher superconvergence rate than that in general case
if the singular point is located at some a prior known point. Then, the superconvergence for
arbitrary degree Newton-Cotes rules of hypersingular integrals were studied in [22,23] and the
superconvergence rate was . Recently, Newton-Cotes rules and the corresponding
superconvergence for evaluating hypersingular integrals on a circle were discussed in [29,30].
Integrals with kernels beyond hypersingular have not been extensively studied with . Du
[4] studied the composite Simpson's rule and showed the optimal global convergence rate is

. Then, Wu & Sun [22] studied the superconvergence of trapezoidal rule, the
superconvergence rate was obtained when the singular point is located at the middle point of
each subinterval far away from two endpoints. Recently, Zhang et.al [28] discussed the
superconvergence phenomenon of the composite Simpson's rule and also the rate was
obtained for those superconvergence points far away from the endpoints.



In this paper, we consider the supersingular integral defined in a circle which have been paid
less attention to it.

(3)

To our knowledge, maybe the reference [12-14] have entire on the subject, where the
superconvegence rate of Simpson rule and trapezoidal rule to compute the supersingular
integral have been considered. When the singular point coincides with some priori known
point, the convergence rate of the trapezoidal rule is higher than the global one which is
considered as the superconvergence phenomenon. Then the error functional of density
function is derived and the superconvergence phenomenon of composite trapezoidal rule
occurs at certain local coordinate of each subinterval which is different from the case
supersingular defined on the interval.

Extrapolation methods as an accelerating convergence technique has been applied to many
fields in computational mathematics [16,21]. The most famous one is Richardson
extrapolation with the error function as

where and are constant independent of h. Then in the paper of Li [11] et.al, the
trapezoidal rule for computation hypersingular integral on interval by extrapolation methods
was given.

Before presented the extrapolation methods to compute the supersingular integral in a circle,
we firstly give notation as below. Let

(4)

where
(5)

Let and the operator be
defined by

(6)

In this paper, based on the asymptotic error expansion of the composite trapezoidal rule for
the computation of supersingular integrals. We firstly obtain the asymptotic error expansion
as follow

(7)

where are functions independent of the local coordinate of the singular point. Then
an extrapolation algorithm is presented to compute the supersingular integral. For a given a
series of is selected to approximate the singular point s with local coordinate equal the
superconvergence point accompanied by the refinement of the meshes. Moreover, by means
of the extrapolation technique, we not only obtain an approximation with higher order
accuracy, but also get a posteriori error estimate.

The rest of this paper is organized as follows. In Sect.2, after introducing some basic formulas
of the general (composite) trapezoidal rule, some notations and preliminaries, we present our



main result. In Sect.3 the proof is completed. In Sect.4, extrapolation algorithm is presented
and the convergence rate is proved. Finally, several numerical examples are given to validate
our analysis.

2.Main result

Let be a uniform partition of the interval
with mesh size and the piecewise linear interpolant for :

(8)

and a linear transformation
(9)

maps the reference element onto the subinterval . Replacing in (3) with
gives the composite trapezoidal rule:

(10)

where denotes the Cotes coefficients, see [13] and the error functional.

We define
(11)

and

(12)

Suppose is replaced by the Legendre polynomial, then defines the Legendre
function of the second kind \cite{candrews1992}. Let

(13)
(14)

and

(15)

Before presenting the main results, we firstly define as follows

(16)

We present our main results below.
Theorem 1 Assume . For the trapezoidal rule defined in (10),
there exists a positive constant C, independent of h and s and functions , independent of
h, such that

(17)

where and
(18)

and



(19)

3.Proof of the Theorem 1

In the following analysis, C will denote a generic positive constant which is independent of h
and s. Let and denote the Legendre polynomial [1] of degree l and the associated
Legendre function of the second kind, respectively.
Define

(20)
where

(21)
By (9), we have

(22)

where is defined by (21) and
(23)

and
(24)

Lemma 3.1 Let be defined in (16). For , by linear transformation (9), we
have

(25)
where

(26)

And is defined as (24).
Proof:By the identity in [1]

(27)

then we get

(28)

and

which completes the proof.
Lemma 3.2 Assume for some m and let be given by (24). Then
we have



(29)

Proof: If , by the definition of (3) and noting , we have

The case can be proved by applying the same approach to the correspondent Riemann
integral.
Lemma 3.3 Under the assumption of Lemma3.2, for , there holds that

(30)

Proof:By the definition of (3), we have:

The first identity in (30) is then verified. The second identity can be obtained by applying the
approach to the correspondent Riemann integral. The proof is completed.
Lemma 3.4 Under the assumption of Lemma3.3, for , there holds that

(31)



Proof:By the definition of (3), we have:

The first identity in (31) is then verified. The second identity can be obtained by applying the
approach to the correspondent Riemann integral. The proof is completed.
Lemma 3.5 Under the assumption of Lemma3.3 and for , there holds that

(32)

The proof of this lemma can be obtained in a way similarly to that of Lemma 3.3 or Lemma
3.4.
Lemma 3.6 Suppose If , then
there holds

(33)

where

Define

(34)

Lemma 3.7 Under the same assumptions of Theorem 1, for in (34), there holds that

(35)

where is defined in (19).
Proof. By the definition of , we have

(36)



As we known

(36)

From the identity

(37)

we have

(38)

where . Since

(39)

where and we have used .

and

As for the second term,

(40)

(35) can be obtained by putting together from (39) to (40) which completes the proof.



Lemma 3.8 Under the assumption of Theorem 2.1, we have

(41)

and

(42)

Proof: By (33), we see that , and thus

(43)

Now, we estimate (42) and get

(44)

and

(45)

The proof is completed.
Lemma 3.9Under the same assumption of Theorem 1 with , there holds that



(46)

Proof: By (23), we have

(47)

which means

(48)

where

(49)

which is related with second kind of legendre function. Since

(50)

then we have

(51)

By Lemma 3.1 and Lemma 3.2 in [11], we can easily show that converges to certain
function.
Proof of Theorem 1:By Lemma 3.6, we have

(52)



By the definition of in (34), we have

(53)

Putting (52) and (53) together yields

where

By Lemma 3.7 and Lemma 3.8, we have

The proof is complete.
Based on the Theorem 1, assume , we present the modify trapezoidal rule

and

then we have

where is defined as (19).

4.Extrapolation method

In the above sections, we have proved that the error functional of the trapezoidal rule has the
following asymptotic expansion of (17). We present our extrapolation algorithms as follow:
Assume there exists positive integer such that

is a positive number. Firstly is partitioned into equal subinterval denoted by
with mesh size . Then we refine to get mesh with mesh size . In



this way, a series of meshes in which is refined from with mesh
size denoted by . Define

(54)

and

We present the following extrapolation algorithm: first compute

Second compute

Thoerem 2 Under the asymptotic expansion of theorem 2.1, for and the series of
meshes defined by (54), we have

and a posteriori asymptotic error estimate is given by

5.Numerical example

In this section, computational results are reported to confirm our theoretical analysis.
Example 1 Consider the supersingular integral

with and the exact analysis is
Table1 Errors of the trapezoidal rule rule

Table2 Errors of the mod-trapezoidal rule

Table3 Errors of the trapezoidal rule



Table4 Errors of the mod-trapezoidal rule

For the case of ,Table1 show that when the local coordinate of
singular point , the quadrature reach the convergence rate of as for the non-
supersingular point the the convergence rate which agree with our theorematically analysis.
From the Table 2 shows the modify trapezoidal rule have the convergence rate of at
both the superconvergence point and non-superconvergence point which coincide with our
results.For the case of because of no influence of the boundary condition,
from table 3 and table 4, we get the superconvergence point the same as

and the superconvergence rate as following which coincide with our
theoretically analysis.
Example 2 We still consider the supersingular integral as example 1
with and the exact analysis is

Table 5 Errors of the linear trapezoidal rule

Table 6 Errors of the linear trapezoidal rule

Now we consider and choose the approximation series with starting
meshes , then s can be located at the mesh point. We list the error and a posteriori estimate



in table 5 and table 6 with the extrapolation rate is and , respectively. From the table we
can see that the numerical results agree with the theoretical analysis very well.
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