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Abstract 

This paper establishes a method which can forecast the general value range of flutter frequency 

by the following two steps, namely 1)Based on the theory of frequency superposition, this paper 

chooses the cantilever panel structure as a main object of the analysis, and controls the chord 

length and the root chord length as single variable separately. By the establishing and simulating 

of flutter procedures, this paper studies the correlation between the flutter mode and the bending 

- torsional coupling modes of the wing model under different geometric parameters. 2) 

Considering the flexible characteristics of the elastic support in the selection of node positions 

together with its agility to descript an intricate mechanical state of a structure, subjoined spring 

supports to the original model to simulated flutter statement. This approximation model 

simulates the flow-solid coupling state caused by the additional aerodynamic force in the flutter 

problem, so that provide a reference for the study of the internal mechanism of the problem.  
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1.Introduction  

In the series of aero-elastic problems caused by the load of the aircraft, the avoidance of the 

flutter problem has become an extremely important part of the aircraft design due to the 

abruptness and destructiveness of the accident caused by it. The aero-elastic flutter damage is 

caused by the interaction among inertial, elastic and aerodynamic forces, thus the vibration of 

the structure becomes considerable significance when the mechanism of flutter is studied [1] . 

In the process of flutter analysis of the wing, the uncertainty and ineffectiveness of the 

simulation results is often caused by the geometric and physical parameters of the model, the 

selection of the structural and the aerodynamic mesh, the match of the Mach number and the 

flutter frequency. 

 

In the process of flutter analysis, the following methods are used to predict the flutter parameters: 

the time-frequency domain of the flutter determinant can be used to obtain the judgment of the 

flutter coupling mode; or the V-g method, p-k method and other solution methods can also get 

the relevant paramount, such as flutter frequency, damping and flutter critical velocity; or 

through the frequency coupling trend and the damping zero-crossing branch to predict the 



flutter mode; the analysis of the matrix eigenvector and the calculation of the contribution 

coefficient of the flutter mode can also achieve the prediction of the flutter mode[4]. 

 

The study is based on a simplified frequency coincidence theory proposed that the critical state 

of the flutter concerning coupling between bending and torsional vibrations. Firstly, analyzing 

rectangular cantilever models with chord length as its single variable, a convenient and effective 

formula for calculating the flutter frequency is obtained. Secondly, by selecting the wing tip 

length individually, the calculation error is compared and the reliability of the formula is also 

verified. At last, finding out a spring stiffness value for the model that makes its first-order 

vibration mode frequency corresponds to the original model flutter value. The research content 

provides a relatively effective forecasting method for the initial selection of the flutter 

frequency before analysis, and also provides some reference value for the simplification of the 

internal mechanism of the flutter problem. 

2. Theoretical development 

2.1 Frequency coincidence theory 

The earliest aerodynamic problem is the bending and torsional coupling vibration of the wing. 

The bending caused by the wing flight leads to the angle of attack to change, and causes the 

disturbance of the lift and the aerodynamic moment, and again causes the bending which 

feedback to the bending and torsional vibration[2]. It is the initial explanation of flutter. A large 

number of flutter analysis of the case also shows that the increase in the flow rate will cause the 

two branches of the frequency changes in the speed continues to increase in the process, the 

two branch frequencies close to each other, the coupling is strengthened, then the coupling 

vibration will draw energy from the airflow and reach the critical point of flutter[5]. It should 

be noticed that this theory is a highly simplified analysis of the mechanism of flutter, which is 

not an exact solution concept compared to the flutter theory defined by the excitation and 

damping forces. The matrix form of the simplified equation of motion for a typical binary wing 

is given as follows 
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Where /LC a   is the slope of the wing lift line, m  is the mass of the wing, 
ak is the stiffness 

of the torsion spring, S  is the reference area of the wing, 
aS  is the static moment of stiffness 

center (
aS m ), 

aI  is the inertia of stiffness center ( 2

0aI I m  ), e  is the distance of 

aerodynamic center to stiffness center, backward for positive; q  is the air flow 

pressure( 2 / 2q V ),  is the air density, 
0f is the deflection of stiffness center, down for 

positive, and 
0a is the rotation angle of stiffness center, counterclockwise for positive; 

The characteristic equation is expressed as:      
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The latent root can be expressed as 
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When 20 0, 4 0q B B AC   , , it is a state of no air flow, the two natural frequencies in the 

vacuum are obtained, that is, the free vibration frequency; when there is air flow,

20, 4 0q B AC   , there are still two vibration frequencies change with the value of q ; When 

q  increased to the point that 2 4 0B AC  ,  2  will become a complex plural. If the real part of 

  is positive, the amplitude will continue to expand, when the movement is unstable, that is 

flutter. 

2.2 p-k method flutter equation  

In this paper, the flutter frequency of the structure is calculated by the p-k method. In p-k 

method, the solution for the flutter problem is found by solving the eigenvalue problem. 

One key advantage of using the p-k method for determining the flutter characteristics is that it 

allows flutter analysis to be carried out, based on any given velocity [3]. Here is the simplified 

equation of plate motion 
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Where f is the displacement of stiffness center, a is the corner of stiffness center, ω is the 

reduced frequency, then by Eq. (3) the decay rate coefficient γ can be written as 
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The p-k flutter solution of two-dimensional rectangular structures can be written as 
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Where, M is the mass matrix, K is the stiffness matrix, A is the aerodynamic force matrix, ρ is 

the free stream air density, V is the velocity, b is a reference semi-chord of the lifting surface, 

and p refers to the complex response frequency and eigenvalue. The complex response 

frequency and eigenvalue, p can be expressed as 

 ,  -1p i i                             （6） 



Using the Eq.(5), the flutter phenomenon of two-dimensional plate wing can be found, when 

γ=0. So, the flutter speed and flutter frequency can also be found, when the sign of damping 

value changes from negative to positive. 

3. Model analysis  

3.1 Flutter characteristics of rectangular cantilever wing  

Selecting the aluminum alloy as the material of the model, the structure and mechanical 

properties are tabulated in Table 3-1. In the premise of keeping the half-wingspan l = 1m 

unchanged, select the reference semi-chord b as a single variable. 

 

Table 3-1. Rectangular cantilever wing properties 

Half-wingspan, l  Thickness, t Young’s 

Modulus, E 

Poisson 

Ratio, μ 

Density, ρ 

1.0 m 0.0018 m 70.0GPa 0.3   2700 kg/m3 

 

When the reference semi-chord b changes, there is no effect on the bending frequency, but will 

have a direct effect on the torsional frequency, so that the torsion mode will "jump" between 

different modes, due to changes in the wing’s structural geometry. The main purpose of this 

paper is to investigate the relationship between frequency coupling modal and the flutter modal.  

Based on this prerequisite, we find out seven models whose modal frequency of the first-order 

torsional mode is close to that of the different order bending modes separately. The 

corresponding values of the reference semi-chord and flutter parameters summarized as shown 

in Table 3-2. 

 

Table 3-2 Corresponding parameters for 7 models 

Label 1 2 3 4 5 6 7 

Semi-chord, 

b(m) 
0.3279 0.1069 0.0578 0.0535 0.0316 0.0224 0.0201 

Flutter 

velocity , 

VF(m/s) 

24.3 33.2 44.4 46.0 58.0 66.0 68.5 

The flutter 

order 
2nd 3rd 4th 4th 5th 6th 6th 

Coupling 

order 

2nd 

&3rd 

3rd 

&4th 

4th 

&5th 

5th 

&6th 

6th 

&7th 

7th 

&8th 

8th 

&9th 

Coupling 

vibration 

mode 

2nd-

bend& 

1st-

torsion 

3th-

bend& 

1st-

torsion 

4th-

bend& 

1st-

torsion 

5th-

bend& 

1st-

torsion 

6th-

bend& 

1st-

torsion 

7th-

bend& 

1st-

torsion 

8th-

bend& 

1st-

torsion 

 

Conclusion: It can be seen from Table 3-2 that the flutter order is not exactly the same as the 

flexural and torsional coupling order, and the coupling order is hysteresis. In addition, with the 



increase of the reference semi-chord b, the flutter order increases(i.e., the frequency of 

participation in the coupling decreases)and the flutter velocities assume a decreasing trend and 

tends to be stable. 

3.2 Flutter frequency prediction of rectangular cantilever wing  

The first five-order bending frequency, the first-order torsional frequency and the flutter 

frequency of the six models are plotted in Fig.3-1. Significant trend consistency in natural 

frequencies can be observed from the flutter curve and the first-order torsional curve, which 

also meet the frequency coincidence theory. At the same time, the trend also proves that the 

torsional frequency is the dominant frequency of the flutter coupling in this model. In the results 

of some studies on the contribution coefficient of the flutter mode, it can be seen that the 

participation ratio of the natural frequencies is relatively disparity when the flutter occurs. 

  

Therefore, based on the theory of frequency coincidence, using the first-order torsional modal 

and the first-order bending modal as the main coupling modals of the prediction formula. The 

main inherent frequencies, the flutter frequencies, the predicted frequencies, and the resulting 

error analysis of the seven modes are summarized in Table 3-3. The comparison of models’ 

original flutter frequencies and estimated frequencies have been shown in Fig.3-2. 

1 1 / 2n tF f f 0                              （7） 

Where, F0
 the estimated flutter frequency, 

1nf is the first bending natural frequency, 
1tf  the 

first torsional natural frequency. 

 

Figure 3-1 the flutter frequency and natural frequencies of seven models 



 

Figure 3-2  Flutter frequencies and estimated frequencies of seven models 

Table 3-3  Frequencies and relative error rates of seven models  

Label 1 2 3 4 5 6 7 

Semi-chord, b(m) 0.3279 0.1069 0.0578 0.0535 0.0316 0.0224 0.0201 

1st torsional freq (Hz) 1.5084 1.4911 1.4863 1.4859 1.4837 1.4829 1.4827 

1st bending freq (Hz) 9.4067 26.140 47.336 51.046 84.128 114.67 125.63 

Flutter frequency, F(Hz) 6.05 16.9 27.3 28.9 44.1 58.5 63.4 

Estimated freq, F0(Hz) 6.212 14.561 25.154 27.009 43.938 58.818 64.298 

Relative error rate (%) 2.68 13.8 7.86 6.53 0.367 0.543 1.41 

 

From Table 3-3, it can be observed that； 

1) The frequency coincidence theory can be proved through the data, and there is synergy 

between the data of flutter frequencies and the 1st-order torsional frequencies. 

2) The prediction frequencies based on the 1st-order torsional modal and the 1st-order bending 

modal are showing a consistency compared with the actual flutter frequencies. In addition to 

the first model, the relative error rate of the formula is also shrinking with the semi-chord 

decreases from 0.328 to 0.020 

3.3 Regular validation of flutter frequency by trapezoidal cantilever wing 

On the basis of the above research, the remaining parameters are kept relatively unchanged, and 

the symmetrical trapezoidal cantilever model is used to further verify the eq.(7), the tip chord 

length is chosen as a single variable. Under standard atmospheric pressure, keeping the wing 

root length b1 = 0.3m unchanged and selecting the wing tip length b2 of 0.30, 0.25, 0.20, 0.15, 

0.10, 0.05, 0.00 (unit: m) respectively. A right-angle trapezoidal model is selected (R0.1) as a 

control model when b2=0.1m. The grid density of the structure model is 1550 and is 510 for 

the aerodynamic model. The structural meshing and the aerodynamic grid partition are shown 

in Fig. 3-3. The first four modes for T0.2, R0.1 and T0.0 are visualized in Fig. 3-4. 



 Figure 3-3  The structural meshing and the aerodynamic meshing 

Figure 3-4  The first four - order vibration modes of T0.2、R0.1 and T0.0 

According to the forecast frequency of Eq.(7), the estimated frequency can be obtained through 

the 1st-order torsional frequency and the 1st-order bending frequency. The necessary frequency 

data and the resulting error analysis of the eight models are organized in Table 3-3. And the 

comparison between original flutter frequencies and estimated frequencies of seven models is 

visualized in Fig. 3-5. 

 

Table 3-4  Frequencies and relative error rates of eight models 

Label T0.3 T0.25 T0.2 T0.15 T0.1 T0.05 T0.0 R0.1 

Wing tip length, 

b2(m) 

0.3 0.25 0.2 0.15 0.1 0.05 0.0 0.1 

The 1st torsional 

frequency (Hz) 

1.5067 1.5905 1.6976 1.8411 2.0473 2.3792 3.0409 2.031 

The 1st bending 

frequency (Hz) 

10.201 11.966 14.311 17.479 21.728 27.110 33.191 21.717 

Flutter frequency, 

F(Hz) 

6.5 7.3 8.1 12.8 15.4 18.8 23.1 15.3 

Estimated 

frequency, F0(Hz) 

6.607 7.574 8.853 10.581 12.911 15.934 19.637 12.89 

Error rate (%) 1.65 3.75 9.29 17.34 16.16 15.38 14.95 15.75 



 

Figure 3-5  Flutter frequencies and estimated frequencies of models 

Under the premise of the presumption formula, the relationship between flutter and frequency 

coincidence theory is analyzed as follows: 

1) Through the comparison between original flutter frequencies and estimated frequencies of 

eight models, it can be observed that the absolute error values are controlled within 3Hz, except 

the triangle model (T0.0) which has a relatively obvious deviation. 

2) The regularity of the Eq.(7) can be proved from Fig. 3-5 that the trend of the data obtained 

by the bending-torsion coupling law is basically the same as that of the flutter frequency.  

3) It can be noticed that the approximation phenomenon of the previous group is different from 

of the second group, due to the error value does not show obvious regularity in the trapezoidal 

model. 

4. Equivalent spring model simulation 

Using the flexibility of the spring elastic support to describe a complex mechanical state of a 

model, it is placed in the two corresponding corner positions of the end of the cantilever 

model[6]. By changing the spring stiffness so that its first order vibration equal to the flutter 

frequency of the original model, and the modal changes after the application of the spring are 

compared with the flow-solid coupling states caused by the additional aerodynamic forces 

under the same spring model. Keep the rest of the conditions unchanged, and then add the spring 

at the midpoint of the end, analysis of the various modes. The inherent frequencies of two spring 

models are tabulated in Table 4-1. 

 

Table 4-1  The inherent frequencies of two spring models 

The flutter order 1st 2nd 3th 4th 5th 

Natural frequency 

of 2 spring bearing 

model (Hz) 

6.5860 

(1st-bend) 

20.937 

(1st-torsion) 

21.170 

(2nd-bend) 

42.724 

(3th-bend) 

44.817 

(2nd-

torsion) 

Natural frequency 

of 3 spring bearing 

model (Hz) 

6.6065 

(1st-bend) 

20.937 

(1st-torsion) 

21.505 

(2nd-bend) 

44.818 

(2nd-

torsion) 

45.123 

(3th-bend) 



 

It can be concluded from Table 4-1 that in the 2-spring bearing model, keeping the first-order 

frequency equal to the flutter frequency, the first-order is still a bending model, the final spring 

stiffness K = 5106. With the same spring stiffness, the torsional frequency of the 3-spring 

bearing model does not change, but each bending frequency increases. The result is consistent 

with the flexural and torsional coupling simplified model setting. 

5. Conclusion and Further work 

From the results presented in this paper, it can concluded that: 

1）Rectangular cantilever models with chord length as single variable: after the flutter result 

analysis of the cantilever structure models, consider the participation difference of the natural 

modals for the flutter motion, an estimated formula of the chatter frequency is deduced by the 

first-order torsional modal and the first-order bending modal. The relative errors between the 

estimated frequency and the actual flutter frequency are controlled within a relatively ideal 

range. In addition to the first group of values, with the reference semi-chord length decreases, 

the absolute error rate of the formula is also shrinking. 

 

2) Trapezoidal cantilever models with tip chord length as single variable: analysis the 

relationship between the presumed formula and the flutter frequency, it can be observed that 

the absolute error approximation phenomenon of the first group of models does not occur in the 

second group of models. The main reason is that the wing tip chord changes will have an 

obvious disturbance to the torsional frequency, so that the value of the error does not show a 

clear regularity, but the frequency values remains still the same as the first group. 

 

3) When applying the same structural analysis under the elastic support simulation, the 

application of the spring at the midpoint of the end of the cantilever beam does not affect the 

torsional frequency which conforms to the theory of plate wing analysis under the assumption 

of bending and the frequency coincidence theory. 

 

4) Prospects: The speculative formula of this paper provides a convenient way to estimate the 

approximate range of the flutter frequency, and further confirms the simplicity of the frequency 

coincidence theory in dealing with some flutter cases. The model types studied in this paper are 

limited and the theoretical estimates are also relatively rough, thus we can refine and correct 

natural frequencies weights of the wing model in order to realize the more ideal prediction 

results in future research. 

Acknowledgements: 

Project supported by the National Natural Science Foundation of China (Nos. 11672362), the 

National Science and Technology Major Project(Nos. 2015ZX06004004-003). 

References 

[1] Li, Z. W., Cao, P. K. and Zhou, T. X. (2008)Numerical simulation of wing flutter based on modal coupled 
method, Aeronautical Computing Technique Research Institute 38, 43–46. 

[2] Yang, Y. X., Ge Y. J. and Xiang, H. F. (2006) Research on the coupled bending-torsional flutter mechanism  



for thin plate sections, State Key Laboratory for Disaster Reduction in Civil Engineering 23, 1–8.  
[3] Pratik Shrestha, Min-Soo Jeong and In Lee. (2013) Flutter characteristics of a morphing flight vehicle with  

varying inboard and outboard folding angles, International Journal of Aeronautical and Space Sciences 14, 
133–139. 

[4] S. Irani, S. Sazesh. (2013) A new flutter speed analysis method using stochastic approach, Journal of Fluids 
and Structures 40, 105–114.  

[5] Shreyas Mandre, L. Mahadevan. (2009) A generalized theory of viscous and inviscid flutter, Proceedings of 
the Royal Society A 466, 141–156. 

[6] Wang, J. R., Zuo, S. G. and Lei, L.(2009) Simulation of static and dynamic stiffness characteristics 
of convex coil spring based on MSC. Marc, College of Automotive Engineering of Tongji University 27, 
807-810.  

 


