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Abstract 

In this study, a high order discontinuous Galerkin method for the two dimensional Euler 

equations is presented, the physical domain is divided into triangular elements which form an 

unstructured mesh. High order 6-node triangular elements with curved edges are introduced 

for curved physical boundaries. Polynomial functions up to fourth order are used as basis 

functions in each computational element. Fluxes between elements are calculated using 

HLLC approximate Riemann solver. An explicit third order Runge-Kutta time integration 

method is employed to solve the discretized systems. A number of test cases are presented to 

demonstrate the accuracy of this method. The results show that when curved elements are 

utilized, this method could archive its designed accuracy on domains with curved geometry 

boundaries.  
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Introduction 

The discontinuous Galerkin method (DGM) was first proposed by Reed and Hill
[1]

 for solving 

neutron transportation problems, since then, the DGM are extensively used in many areas, 

which include fluid simulations, MHD simulations, shallow water simulations and many 

others. In the field of computational fluid dynamics, finite difference method (FDM) and 

finite volume method (FVM) have long history of applications. FDM is suitable for building 

high order numerical schemes, but it has many difficulties when dealing with complex 

geometries and unstructured meshes. FVM could be implemented on unstructured meshes and 

complex geometries easily, but it is hard to construct high order compact FVM schemes. The 

DGM has both the advantages of FDM and FVM. The discrete unknown variables of DGM 

are linear combinations of element-wise polynomial basis functions, high order DGM 

schemes could be built on arbitrary meshes with compact stencils. 

 

High order DGM is much more sensitive to the numerical boundary conditions than other 

methods
[2,3]

. When the physical boundaries are curved, boundary elements with straight edges 

may not meet the demand of DGM and lead to unphysical solutions. In these cases, accurate 

representations of curved boundaries are crucial for performing high order DGM simulations.  

 

The present authors have developed a 2D DGM for Euler equations on unstructured meshes. 

High order elements with curved edges are utilized at physical boundaries. Numerical tests 

show that when curved elements are utilized, DGM could archive its designed accuracy on 

domains with curved physical boundaries. 

Governing Equations 

The conservative forms of Euler equations are 
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Where U, F and G refer to conservative state vector, x-direction inviscid flux and y-direction 

inviscid flux respectively.  
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To enclose the equation system, the equation of state is introduced. 

 p RT  (3) 

Discontinuous Galerkin Method 

The physical domain is divided into non-overlapping elements K. The unknowns hU  on each 

element are expressed as linear combinations of basis functions. 

 h i iU U   (4) 

In each element, the weak form of governing equations is introduced. 
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With some manipulations, the equations have the following form. 
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The solution of DGM has multiple values on element boundaries. In order to determine a 

unique value of inter-cell fluxes, numerical flux functions are introduced, in this study, the 

HLLC Riemann solver
[4]

 is adopted. 

 

At each time step, a system of ordinary differential equation is formed 

 =
jK

dU
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Where R is residual term, M refers to the mass matrix on element Kj. A third order explicit 

Runge-Kutta scheme is utilized to solve this ordinary equation system. 

Numerical Results 

The 2D subsonic flow around a cylinder
[5]

 at Mach number 0.38 is chosen to demonstrate the 

performance of DGM with the existence of curved boundaries. The radius of cylinder is 0.5, 

computational domain is bounded by a circle of r=20. four successively refined meshes are 

generated, which contains 16×4, 32×8, 64×16 and 128×32 points. Details about these 

meshes could be found in [6], the meshes are shown in Fig.1.  



    

 

    

Figure 1. Successively refined meshes of cylinder, 16×4 (top left), 32×8 (top right), 64×16 

(bottom left) and 128×32 (bottom right) 

 

    

 



    

Figure 2. Mach contour using mesh 16×4 (top left), 32×8 (top right), 64×16 (bottom left) 

and 128×32 (bottom right), with straight-edge triangular elements 

Mach contours using these meshes of first order DGM are shown in Fig.2, ΔM=0.038. 

Theatrically, the contour should have a symmetric pattern, but all of these results show 

unphysical wakes along the downstream of cylinder, and these unphysical wakes will not 

disappear with the successive refinement of meshes. This indicates that straight edged 

elements could not fit curved boundaries and cause wrong solutions. 

 

Figure 3. 6-node triangular element (solid) fitting a curved boundary (dashed) 

 

 

Figure 4. Mesh with 6-node curved triangular elements (blue) near boundary 

 

In order to generate meshes for curved boundaries, the high order 6-node curve edged 

triangular element is introduced, and it is shown in Fig.3. With curved elements at cylinder 



boundary, a new mesh is generated (Fig.4). This mesh contains both curve edged elements for 

boundary fitting and straight edged elements for space filling. 

    

 

    

Figure 5.  Mach contour on 16×4 mesh with p=1 (top left) p=2 (top right), p=3 (bottom 

left) and p=4 (bottom right), with curved boundary elements 

Mach contours obtained with up to fourth order DGM using this new mesh are shown in Fig.5. 

The results show that, with the utilizations of curved elements near cylinder boundary, 

numerical dissipations are reduced, and the symmetric pattern of Mach contour is obtained 

with high order DGM, which implies the correct discretization of curved boundaries with high 

order curved elements is crucial in high order DGM computations. 

Conclusions 

In this study, a discontinuous Galerkin method with curved boundary treatment is presented. 

The curved solid boundary is fitted with high order 6-node triangular elements. The results of 

subsonic cylinder flows show that, DGM is very sensitive to the treatment of curved 

boundaries, high order curved elements must be utilized to archive its designed accuracy on 

domains with curved physical boundaries. 
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