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ABSTRACT

This paper presents the extension of hyperbolic and conservative two-phase flow model to a

mixture of porous media containing nanofluids which is known as an aerogel. We focus mainly

on the application of non-equilibrium mixture behaviour between phases in one space dimen-

sion. The governing equations are solved by finite volume techniques using Godunov methods

of centred-type. Special emphasis is given to important and unsteady non-linear phenomena

such as shock propagation in low densities aerogels. Simulation results are compared with

other methods providing a remarkable agreement. Results show the good capabilities of this

mixture formulation in the resolution of discontinuities in aerogel problems. This provides

some insights into the fundamental properties of aerogels and helps to better understand some

of the inherent difficulties in quantifying them using two-phase flow processes.

Keywords: Multiphase flows, Non-equilibrium, Nanofluids, Porous media, System of conser-

vation laws, Riemann solution, Numerical simulation

Introduction

Aerogel is very common in industrial processes and its applications are already in use within the

energy efficiency and pharmaceutical industries. In the meantime, many aerogels rely on light

porous materials for which it may be densified into silica glasses by thermal processes (see, for

example, [1, 2, 3, 16, 21]). During the last century, the nuclear and aerospace industries pushed

strong research activity on the area. Their efforts have been aimed at the clarification of the

mechanisms taking place during this complicated physical situation. In general, aerogels are

solids with high void fractions, that is, porosities along with high surface areas, and possess

very low densities and low conductivities. See, for example, [4, 5, 14] and references therein

Typically, attention is given to the combination of high void fractions and very small pores to

provide aerogels along with their extreme properties such as very low solid density and low

thermal conductivity. These are mainly based on experimental analysis [6, 10, 11, 13]. How-

ever, there have been various gel-derived materials numerical simulations on the basis of simple

models known as, for instance, reaction-limited cluster aggregation (RLCA) [18], diffusion-

limited cluster aggregation (DLCA) [12] and diffusion-limited aggregation (DLA) [9]. Given

such developments, it is of interest to investigate aerogels from mathematical and numerical

point of views. Since aerogels belong to the family of nanoporous materials, it can be consid-

ered as a porous media containing nanofluids. Accordingly, one can use single or two-phase

flow approach to study such phenomena. In the single-phase flow approach, the nanosolids

can be simply fluidized where the relative velocity between phases is considered negligible.

However, in the two-phase flow approach, this relative velocity may not be zero due to phase
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interactions. In this regard, there exist a large number of articles concerning two-phase flow

models where the nanofluids are treated as a simplified mixture of a base fluid and nanoparti-

cles (see, for example, [7, 16, 20]). Most these articles are indicated that the two-phase mixture

approach is more precise than single-phase approach. Further, these articles also have mainly

examined the physical aspects of nanofluids rather than theoretical and numerical aspects of

such models. As far it goes, only limited number of articles address the issues of the appli-

cation of two-phase flow equations in nanofluids. These articles, however, used turbulent and

laminar steady state two-phase flow models without taking care of the mathematical features of

such models. This paper aims to study aerogels by considering a recently developed two-phase

flow model (see, for example, [15, 19]). To this end, an unsteady system based on mixture

formulations is presented. The aerogel is composed of nanofluids in which the dispersed phase

is a gas. The governing partial differential equations (PDEs) are three mixture conservation of

mass, momentum and energy. This is accomplished by three balance equations for gas void

fraction, gas mass fraction and relative velocity between the gas and nanofluids. The single

set of equations do not need any physical artificial stabilizing terms due to their conservativity

and hyperbolicity features. Further, the deeply coupled equations are resolved on the basis of

the Riemann problem using Godunov methods of centred type [17]. This solution becomes

appropriate since it leads to making the relative velocity visible which is an advanced computa-

tional tool for aerogels. The model provides successful results at high and low phase velocities

with low and high void fractions. It is found that the inclusion of nanofluids into the base fluid

produce physically realistic solutions for strong relative motion between the nanofluids and gas

phases. Results are compared with other available numerical methods producing accurate, ef-

ficient and free from numerical dissipation and dispersion computations. Simulation and test

results show that the model equations can effectively simulate non-equilibrium aerogel, which

may broaden the possible application areas of aerogel such as energy storage and biological tis-

sues. The model equations and their numerical discretization for the non-equilibrium behaviour

is given in the following section. Verification results are discussed in the section after followed

by the conclusions section.

Governing Equations and Numerical Implementation

The aerogel considered here is composed of nanofluids in which the dispersed phase is a gas.

The governing equations are formulated upon the conservation laws for mixture mass and mix-

ture momentum along with a balance equation for the relative velocity between the two phase

system in a single set of equations. For the investigation within the scope of this paper, the

two-phase flow treatment is essentially a two-phase mixture model with isentropic conditions

which significantly simplifies the mathematical formulation for the aerogel thereby reduces the

computational costs. Within the context of mixture formulations, the total density, ρ, total and

relative velocities, u and ur, are discontinuous at the time-dependent interface with void frac-

tion of the gas phase is always between 0 and 1. The time-dependent equations for mixture

mass, mixture momentum and relative velocity are as follows:

∂

∂t
(ρ) +

∂

∂x
(ρu) = 0, (1)

∂

∂t
(ρu) +

∂

∂x
(ρu2+P + ρc(1 − c)u2

r) = S, (2)

∂

∂t
(ur) +

∂

∂x

(

uur+(1 − 2c)
u2

r

2
+ ψ(P )

)

= π, (3)



where t is the time, x is the spatial coordinate, c is the gas mass void fraction, P represent the

mixture pressure and ψ(P ) is a function that connect the different phases through the following

relation

ψ(P ) = eg +
Pg

ρg

− enf −
Pnf

ρnf

. (4)

The terms S and π in the mixture momentum and relative velocity equations approximate the

interphase exchange processes. In addition to that, constituting relationships need to be added

to system (1)-(3) so that one can predict the content of the aerogel. Closure laws account for

the nanofluid physical properties and the thermodynamic behaviour of the two-phase system

between gas and nanofluid phases. Under the interest that the two-phase system is considered

as an aerogel, the density, velocity, relative velocity, pressure of the aerogel are calculated by

the following mixture laws:

ρ = αgρg + (1 − αg)ρnf and ρu = αgρgug + (1 − αg)ρnfunf ,

P = αgPg + (1 − αg)Pnf , c = αgρg ρ
−1 and ur = ug − unf ,

where subscripts (g) and (nf) denote gas and nanofluid, respectively. Further, the physical

properties of the nanofluid are defined as follows:

ρnf = αsρs + (1 − αs)ρbf and unfρnf = αsρsus + (1 − αs)ρbfubf ,

where indexes (s) and (bf) refer to the solid and base fluid, respectively, and the void fraction

of solid and base fluid agree with αs + αbf = 1. For the system closure, the stiffened equation

of state (EOS) is used for each phase as

Pj = Kj





ρj

ρ̄j





γj

− P∞.

The subscript j = g is for the gas phase while j = nf for the nanofluid phase and γj , Kj , P∞

and ρ̄j are constant parameters to be specified for each phase.

It should be noted that system (1)-(3) has been intensively studied and independent of the nu-

merical methods being employed to resolve it. See, for example, [8, 15, 19], and the references

therein. This is due to the fact that the governing equations of the system inherit conservative

form as well as well-posedness forming an initial-boundary-value problem that describe differ-

ent physical phenomena of interests. Furthermore, the aerogel equations (1), (2) and (3) are

discretized herein by finite volume Godunov-type approach. Within such approach, the govern-

ing equations incorporate the resolution of the Riemann problem for computing the interface

fluxes using the following time-marching formula [17]

U
n+1

i = U
n
i −

∆t

∆x

[

Fi+ 1

2

− Fi− 1

2

]

+ ∆t Si, (5)

which update the aerogel variables to a new time step. In (5), subscript (i) represents the cell

index, the superscript (n) is the time level, ∆x and ∆t are the cell size and time step, respec-

tively. Fi± 1

2

are the numerical fluxes through the left and right interfaces of cell (i) and Si is the

source terms that are evaluated at the cell centre. These fluxes are calculated by means of the

solution of a Riemann problem with appropriate time-centred left and right input states. In the

results shown below, Godunov methods of centred-type such as the second-order Slope Limiter



Centred (SLIC) scheme are employed in the numerical resolution of system (1)-(3). The SLIC

scheme provides a high-resolution of large-gradient regions that are free from spurious oscil-

lations. For the numerical background and details of the SLIC scheme, the readers may refer

to [17].

Results and Discussion

The numerical simulations are performed by solving the governing equations (1)-(3) with two

different test problems using finite volume approach within the aerogel. The first test problem,

Test 1, involves the following initial data for the Riemann problem

(

αg, ρg, ug

)

L
=

(

0.5, 2.0,−0.1
)

(

αs, ρs, us, ρbf , ubf

)

L
=

(

0.7, 8.0,−2.0, 0.1,−2.0
)

if x ≤ 0,
(

αg, ρg, ug

)

R
=

(

0.5, 2.0, 0.1
)

(

αs, ρs, us, ρbf , ubf

)

R
=

(

0.7, 8.0, 2.0, 0.1, 2.0
)

if x > 0,

corresponding to rarefaction waves traveling in opposite direction separated by a contact dis-

continuity. In the second test problem, Test 2, we consider a collision of two symmetric shock

waves, weak, and a trivial contact discontinuity with the following initial data

(

αg, ρg, ug

)

L
=

(

0.01, 3.0, 0.1
)

(

αs, ρs, us, ρbf , ubf

)

L
=

(

0.0001, 7.0, 0.4, 2.0, 0.4
)

if x ≤ 0,
(

αg, ρg, ug

)

R
=

(

0.01, 3.0,−0.1
)

(

αs, ρs, us, ρbf , ubf

)

R
=

(

0.0001, 7.0,−0.4, 2.0,−0.4
)

if x > 0.

The simulations results are shown in figures 1 and 2. In all results, it is not possible to solve

the governing equations analytically due to the existence of several non-linear properties and

closure relations involved for the current interest in aerogel. Thus, we produce a high-resolution

numerical solution for the Riemann problem to calculate the reference solution on a very fine

mesh of 10000 cells by using the total variation diminishing (TVD) slope limiter centre (SLIC)

scheme in the computational domain [−10, 10]. Simulations are also carried out for the aerogel

with transmissive boundary conditions along with a CFL number of 0.9 through the SUPERBEE

limiter in the course of the SLIC scheme. The numerical resolutions (symbols) are compared

with the reference solutions (solid lines) as well as with numerical solutions provided by other

numerical methods available in the literature on a coarse mesh of 100 cells. In the test cases,

γg = 1.4, ρ̄g = 1.0 kg/m3, Kg = 1.0 Pa and P∞ = 0, γnf = 2.8, ρ̄nf = 1.0 kg/m3, Knf = 1.0
Pa and P∞ = 1 Pa. Results for Test 1 are shown in figure 1 for the mixture two-phase flow

variables using three different numerical methods at a time t = 0.8 ms. The solution for this

test problem consists of left and right rarefactions propagating in opposite direction. Figure 1

shows that the resolution for the relative velocity jump across the middle wave with lower den-

sities whereas the mixture density, mixture velocity and mixture pressure are not for rarefaction
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Figure 1: Test 1: Expansion tube problem in an aerogel at time t = 0.8 ms. The TVD

SLIC, first-order centered (FORCE) and Lax-Friedrichs methods are compared with the

reference solution results. Coarse meshes, symbols, are provided on 100 cells and very

fine meshes of 10000 cells for the solid lines. The waves seen from left to right, a fast left

rarefaction, a contact discontinuity and a fast right rarefaction.

waves propagating in an aerogel. The relative velocity jump indicates the possible sudden jump

of gas and nanofluid velocities across the middle wave. It is also noted that a good agreement

with the reference solutions for all the three methods and the model is able to deal with low

density test case producing rarefaction waves. In figure 2, the results from a collision with an

aerogel of low phase densities are displayed at a time t = 2.3 ms. The solution for the aerogel

contains a left shock wave, a contact discontinuity and a right shock wave. It is observed that the

mixture flow variables remain constant across the middle wave, however, the relative velocity

jump discontinuously as in Test 1. This leads to the fact that lower phase densities slowly in-

crease the relative motion between the gas and nanofluid phases during the collision. Again, the

numerical results compared favourably with the reference solutions and capable of producing

oscillation-free profiles at discontinuities. We conclude that the present model eqautions and

the associated methods can automatically treat aerogel as a two-phase flow system even with

different physical situations.



-10 -5 0 5 10

Position

-0.5

0

0.5
R

e
la

ti
v

e
 V

e
lo

c
it

y

Reference

TVD SLIC

FORCE

Lax-Friedrichs

-10 -5 0 5 10

Position

5.5

6

6.5

7

7.5

8

8.5

9

M
ix

tu
r
e
 P

r
e
ss

u
r
e

Reference

TVD SLIC

FORCE

Lax-Friedrichs

-10 -5 0 5 10

Position

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

M
ix

tu
r
e
 D

e
n

si
ty

Reference

TVD SLIC

FORCE

Lax-Friedrichs

-10 -5 0 5 10

Position

-0.5

0

0.5

M
ix

tu
r
e
 V

e
lo

c
it

y

Reference

TVD SLIC

FORCE

Lax-Friedrichs

Figure 2: Test 2: The numerical results of the shock tube problem in an aerogel at time

t = 2.3 ms. Comparison of the three different numerical methods using a coarse mesh

of 100 cells (symbols) and the reference solution on a very fine mesh of 10000 cells (solid

lines).

Concluding Remarks

A mixture two-phase flow model has been proposed for the simulation of porous media con-

taining nanofluids used widely in aerogel production. This is motivated by the relative motion

demanded to cope with the two-phase system arising in aerogels. Godunov methods with grad-

ually growing levels of complexity in aerogels are employed to solve the governing equations in

a one-dimensional domain representing the conceptual low-densities two-phase flow problems.

This indicates that the extension of such mixture model to aerogel seems worthwhile as these

type of hyperbolic problems are much better documented.
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