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Abstract 

The generalized-strain mesh-free (GSMF) local method, it is derived through a weighted-
residual formulation that leads to the work theorem of structures theory. In a local region, the 
work theorem establishes an energy relationship between a statically – admissible stress field 
and an independent kinematically – admissible strain field.  

In the formulation of the GSMF, the local form of work theorem is simply an integration – 
free formula. The Moving Least Squares (MLS) approximation of the elastic field is used to 
construct the trial function in this local meshless formulation. GSMF has a highly 
computational efficiency leading to accurate numerical results in two-dimensional elasticity 
problems.  

This paper is concerned with the size effect of the configuration parameters of the local 
support domain and the local weighted-residual or quadrature/collocation domain on GSMF. 
A comparison of the error in energy and displacement is presented for five different regular 
nodal distribution, in order to solve the Timoshenko cantilever beam problem and the infinite 
plate with circular hole. The results are compared with the exact solution and optimal 
parameters have been determined. 
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Introduction 

There are different numerical modeling techniques and the most popular and widely used is 

the Finite Element Method (FEM). Although recently meshless methods are becoming more 

used due to their accuracy and performance in numerical analysis. Different methods have 

been proposed [1-7], some of them are derived from a weak – form formulation on global 

domain and others from local sub – domains. The weighted – residual method is the basis for 

the meshless formulation [8]. 

 

The Generalized – Strain Mesh – free (GSMF) formulation presented by [9], expressed that 

the work theorem generates a weak form that is completely integration free, working as a 

weighted-residual weak – form collocation. This formulation has two important parameters 

associated to support and quadrature/collocation domain, this parameters have a greater 

influence in the problem solution obtained by Meshfree methods. 

 

The size local support domain (αs) and the weak – form domain or local 

quadrature/collocation domain (αq) are very important meshless parameter, both related to 

accuracy and computational efficiency. A comparative study of the effect of these size 

parameters using the Meshless Local Petrov – Galerkin method (MLPG) for the solution of a 

cantilever beam was presented by [10] and, using the same method, a similar study for the 

cantilever beam and the infinite plate with circular hole was carried out by [11]. 
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This paper presents a numerical comparison of the Generalized-strain Mesh-free (GSMF) 
formulation for the size effect of the configuration parameters of the local support domain and 
the local quadrature/collocation domain; for five different regular nodal distribution of the 
Timoshenko cantilever beam and one nodal distribution of the infinite plate with circular hole. 
The results obtained in this work, both for the energy and displacement, are compared with 
the exact solution presented for 2D problems plane stress case and important conclusions are 
presented in the end. 

MLS Approximation 

Let Ω be the domain of a body with boundary Г and let N = {X1, X2,.., XN} ϵ Ω be a set of 
scattered nodal points that represents a meshless discretization. Some of them are located on 
the boundary Г where Ωs, represented as ΩP, ΩQ and ΩR, is the local compact support of a 
node Xt, represented as XP, XQ and XR. Ωx is the domain of definition of a sampling point X 
and Ωq is the local weak-form domain or quadrature domain of node Xi, as represent in Fig. 1. 
 
Circular or rectangular local supports centered at each nodal point can be used. In the region 
of a sampling point X, the domain of definition of MLS approximation is the subdomain Ωx, 
where the approximation is defined. 
 

 

Figure 1. Representation of a global domain Ω and boundary Г in a meshless 

discretization, with Xi nodes distributed within the body. 

Shape Functions 

Let Ωx be the domain of definition of the MLS approximation, in a neighborhood of a 

sampling point x. To approximate the displacement u(x) ϵ Ωx, over a number of scattered 

nodes Xi ϵ Ω, i = 1, 2,.., n, where the nodal parameters ˆ
iu are defined, the MLS approximation 

is given by  

             ( ) ( ) ( ),h Tu x x a x p      (1) 

for x ϵ Ωx, in which  

               1 2( ) ( ), ( ),..., ( ) ,T

mx p x p x p xp  (2) 

is a vector of the complete monomial basis of order m and a(x) is the vector of unknown 

coefficients ( ), 1,2,...,ja x j m that are functions of the space coordinates  1 2, ,
T

x x x for 2-D 

problems. 

The coefficient vector a(x) is determined by minimizing the weighted discrete L2 norm  
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with respect to each term of a(x), in which wi(x) is the weight function associated with the 

node xi, with the compact support that is ( ) 0,iw x  for all x in the support of wi(x). In the Fig. 

1 is represented the compact support of the MLS weight functions associated with a few 

nodes. Finding the extremum of J(x) with respect to each term of a(x), leads to 
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where, 
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and 

             1 2
ˆ ˆ ˆ ˆ, ,..., .nu u uu  (7) 

Solving equation (4) for a(x) yields 

                                                           1 ˆa( ) ( ) ( ) ,x x x A B u  (8) 

 

Provided n ≥ m, for each some point x, condition defined in the MLS approximation. 
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The shape function of the MLS approximation for the node xi is represented Figure 2. 

 

 

Figure 2. Respectively the typical weight function and shape function of the MLS 

approximation 

The MLS shape functions are not nodal interpolants which means mathematically that Since 

ϕi(xj)≠δij. Since ϕi(x) vanishes for x not in the local domain of the node xi, is preserved the local 



character of the MLS approximation. The nodal shape function is complete up to the order of 

the basis. The smoothness of the nodal shape function is determined by the smoothness of the 

basis and of the weight function. The spatial derivatives of the shape function ( )i x are giving 

by 
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in which  
,() () / .k kx    

Weight Functions 

In the Figure 2 the weight functions are represented, in Eq. (3) are introduced for each node xi, 

have a compact support for all x, which defines the subdomain where ( ) 0.iw x  This paper 

considers rectangular compact supports with weight functions defined as 

( ) ( ) ( )
x yi i iw x w x w x

 
(12) 

the weight function is given by the quartic spline function     
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in which 
xi id x x   and .

yi id y y   The parameters 
xi

r and 
yi

r represent the size of the 

support for the node i, respectively in the x and y directions. 

Elastic Field 

The elastic field is approximated at a sampling point x. Considering Eq. (9) the displacement 

and strain components   
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(15) 

ˆ ˆ   Lu LΦu Bu  (16) 

in which geometrical linearity is assumed in the differential operator L and thus,  
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(17) 

Stress and traction components are 

ˆ σ D DBu  (18) 

and  

ˆ t nσ nDBu  (19) 

in which D is the matrix of the elastic constants and n is the matrix of the components of the 

unit outward normal, defined as  

1 2

2 1

0

0

n n

n n

 
  
 

n

 

(20) 

Eq. (15) to (19) show that the variables of the elastic field are defined in terms of the nodal 

unknowns ˆ,u for all point x ϵ Ωx. 

Local Form of the Work Theorem   

The development for the local form of the work theorem introduced in [12] is presented in 

this section. Let Ω be the domain of a body and Г its  boundary, subdivided in Гu and Гt that is 

;u t    in the Fig. 3 show the nodal points P, Q and R have corresponding local domains 

ΩP, ΩQ, and ΩR. 

 

Figure 3. Meshless discretization of the global domain Ω and the local domains ΩP, ΩQ 

and ΩR, with boundary Г = Гu U Гt represented.  

The mixed fundamental boundary value problem of linear electrostatics aims to determine the 

distribution of stress σ, strains ε and displacements u throughout the body, when it has 

constrained displacements u defined on Гu and is loaded by an external system of distributed 

surface and body forces with densities denoted by t on Гt and b in Ω, respectively. 

The entire admissible elastic field is the solution of the posed problem that simultaneously 

satisfies the kinematic admissibility and the static admissibility. If this solution exists, it can 

be shown that it is unique, provided linearity and stability of the material are admitted [12, 13]. 

The general work theorem establishes an energy relationship between any statically –

admissible stress field and any kinematically – admissible strain field that can be defined in 

the body. Derived as a weighted residual statement, the work theorem serves as a unifying 

basis for the formulation of numerical models Continuum Mechanics [14]. 



In the domain of the body, consider a statically-admissible stress field that is  

0T b  L  (21) 

in the domain Ω, with boundary conditions  

t n t    (22) 

on the static boundary Гt, σ: Stress components, L: Matrix differential operator, t: represent 

the traction components, t : Prescribed tractions values, n: Unit normal components to the 

boundary. 

In the global domain Ω, consider an arbitrary local subdomain ΩQ, centered at the point Q, 

with boundary Г = ГQi U ГQt U ГQu, ГQi: Interior local boundary and ГQt and ГQu: Local 

boundaries that respectively share a global boundary. Due to its arbitrariness, this local 

domain can be overlapping with other similar subdomains. For the local domain ΩQ the strong 

form of the weighted-residual equation is written as 

  ( ) 0

Q Qt

TT
T b d t t d  

 

     L W W

 
(23) 

in which WΩ and WГ are arbitrary weighting functions defined, respectively in Ω and on Г. 

When the domain term of Eq. (23) is integrated by parts, the following local weak form of the 

weighted residual equation is obtained  
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(24) 

which now requires continuity of WΩ, as an admissibility condition for integrability. For the 

sake of convenience, the arbitrary weighting function WГ is chosen as 

  W W
 

(25) 

on the boundary ГQt. Thus, Eq. (24) leads to 
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(26) 

Consider further an arbitrary kinematically-admissible strain field *, with continuous 

displacements u* and small derivatives, in order to assume geometrical linearity, defined in 

the global domain that is  

       
* *  Lu  (27) 

in the domain Ω, with boundary conditions  

     
* u u  (28) 

on the kinematic boundary Гu. 

 

When the continuous arbitrary weighting function WΩ, is defined as  

          
*

 W u
 (29) 

the weak form (26), of the weighted residual equation, becomes  
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(30) 

which can be written in a compact form as  

Q Q Q

T T Td d d
  
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* * *

t u b u σ

 
(31) 

This equation is the starting point of kinematically admissible formulations of the local mesh-

free method presented in this paper. Equation (31) which expresses the static-kinematic 

duality, is the local form of the well-known work theorem, the fundamental identity of solid 

mechanics [16]. 

 

It is the important to notice that the stress field σ, is any one that satisfies equilibrium with the 

applied external forces b and t, which is not necessarily the stress field that actually settles in 

the body. Also, the strain field ε*, is any one that is compatible with the constrains 
* ,u u which is not necessarily the strain field that actually settles in the body. These two 

fields are not connected function WΩ they are completely independent. For that reason, Eq. 

(31) can be used under the only assumption of geometrical linearity. It is the independence of 

the two admissible fields of the Eq. (31) that allows generation of different meshfree methods, 

when the strain field is locally defined through different options, as carried out in this paper. 

 

A final important remark, worth of mentioning, is that the local domain ΩQ, is any arbitrary 

subdomain Ω, of the body. 

Modeling Strategy    

In the local meshfree methods different formulations can be derived when the arbitrary 

kinematically – admissible field ε*, is locally defined in the work theorem, Eq. (31). In the 

following section, simple kinematically – admissible local fields will be used to derive the 

meshless formulation presented in this paper, the Generalized-Strain Mesh-Free (GSMF) 

formulation. On the other hand, the statically – admissible local field σ, will be always 

assumed as the elastic field that actually settles in the body. Not only satisfying static 

admissibility, through Eq. (21) and (22), but also satisfying kinematic admissibility in the 

elastic field defined as 

 Lu  (32) 

In the domain Ω, with boundary conditions 

u u  (33) 

on the kinematic boundary Гu; in the which the displacements u, are assumed continuous with 

small derivatives, in order to allow for geometrical linearity of the strain field .  Therefore, 

Eq. (33) must be enforced in the numerical model, in order to provide a unique solution of the 

posed problem. 

 

For a meshless discretization of the body, the local weak-form domain or quadrature domain 

ΩQ, centered at the node Q, can be defined in this paper as a rectangular or circular 

subdomain, as represented in Fig. 3. 



Generalized-Strain Formulation  

 

The Equation (31), the kinematically – admissible displacement field u*, was assumed as a 

continuous function leading to a regular integral function that is the kinematically-admissible 

strain field *.  For more information about the method, see [9].       

 

However, this continuity assumption on u*, enforced in the local form of the work theorem, is 

not required but can be relaxed by convenience, provided * can be useful as a generalized 

function, in the sense of the theory of distributions [15]. Hence, this formulation considers 

that the kinematically-admissible displacement field is a piece-wise continuous function, 

defined in terms of the Heaviside step function and therefore the corresponding kinematically-

admissible strain field is a generalized function, defined in terms of Dirac delta function. 

 

For the sake of the simplicity, in dealing with Heaviside and Dirac delta functions in a two-

dimensional coordinate space, consider a scalar function d, defined as  

0    if     x x
x x     that is     

0    if     x x

Q

Q

Q

d
d

d

 
  

   

(34) 

which represents the absolute-value function of the distance between a field point x and a 

particular reference point xQ, in the local domain 
Q Q   assigned to the field node Q. 

Therefore, this definition always assumes 
Q(x,x ) 0,d d  as a positive or null vale, in this 

case when-ever x and xQ are coincident points. It is important to remark that, in Eq. (34), 

neither the field point x nor the reference point xQ is necessarily a nodal point of the local 

domain. 

For a scalar coordinate, 
Q(x,x ),d d the Heavise step function can be defined as   

Q

Q

1  if  0   ( 0  for   x x )
( ) 

0  if  0           that is   x x

d d
H d

d
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(35) 

in which the discontinuity is assumed at xQ and consequently, the Dirac delta function is 

defined with the following properties  
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  if  0         that is x x
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(36) 

in which H’(d) represents the distributional derivate of H(d). Note that the derivate of H(d), 

with respect to the coordinate xi, can be defined as 

, , ,( ) '( ) ( ) ( )i i i iH d H d d d d d n                                         (37) 

Since the result of this equation is not affected by any particular value of the constant ni, this 

constant will be conveniently redefined later on. 

 

Kronecker delta function can be defined through Heaviside step function as 

Q

Q

1  if  0   that is  x x
( ) ( ) ( ) 1 

0  if  0  that is  x x

d
d H d H d

d

 
      

 
 

(38) 



Which has the distributional derivative always null that is  

'( ) ( ) ( ) ( ) ( ) 0d d d d d           (39) 

as a consequence of the symmetry of Dirac delta function. 

 

Now considerer that dl, dj and dk represent the distance function d, defined in Eq. (34), for 

corresponding field points xl, xj and xk. Then, the kinematically – admissible displacement 

field can be defined as a linear combination of Kronecker delta function evaluations at an 

arbitrary number of collocation points, conveniently arranged in the local domain 
Q Q   of 

the field node Q, that is   

1 1 1

u*(x)= ( ) ( ) ( )
i tn n n

i t
l j k

l j ki t

L L
d d d e

n n
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(40) 

in which  e 1 1
T

  represents the metric of the orthogonal directions; ni, nt and nΩ represent 

the number of collocation points, respectively on the local interior boundary 

i t uQ Q Q Q     with length Li, on the local static boundary 
tQ  with length Lt and in the 

local domain ΩQ with area S. This assumed displacement field u*(x), a discrete rigid-body 

unit displacement defined at collocation points, schematically represent in Fig. 4, 

conveniently leads to a null 

 

 

Figure 4. Schematic representation of the displacement u*(x) of Eq. (38), a discrete 

rigid-body unit displacement defined at collocation points, of the Generalized-Strain 

Mesh-free formulation, for a local domain associated with a field node Q.    

generalized strain field that is  

*(x) 0   (41) 

as a consequence of Eq. (39). The local work theorem, Eq. (31), can be written as 

* * *

Q Qt Qt Q Q
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(42) 

which, after considering the assumed displacement and the strain components of the 

kinematically-admissible field, respectively Eq. (40) and (41), leads to 
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(43) 

Now considering the properties of Kronecker delta function, defined in Eq. (38), the Eq. (43) 

simply leads to 

     
x x x

1 1 1

e 0
i t

l j k

n n n
T i t

l j ki t

L L S
t

n n n



  

 
   

 
  t b

 
(44) 

and finally to 
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(45) 

Equation (45) states the equilibrium of tractions and body forces, pointwisely defined at 

collocation points, as schematically represented in Fig. 5; obviously, the pointwise version of 

the Euler – Cauchy stress principle. 

 

 

Figure 5. Schematic representation of the equilibrium of tractions and body forces of Eq. 

(44), pointwisely defined at collocation points of a local domain associated with a field 

node Q, of the Generalized-Strain Mesh-free formulation. 

This is the equation used in the GSMF formulation which, therefore, is free of integration. 

Since the work theorem is a weighted – residual weak form, it can be easily seen that this 

integration – free formulation is nothing else other than a weighted – residual weak – form 

collocation. 

Equations (45), of the Generalized – Strain Mesh – free formulation, can be derived from 

another kinematically – admissible displacement field, directly defined in terms of Heaviside 

step function, see [8].  

Discretization of Eq. (45) is carried out with the MLS approximation, Eq. (15) to (19), for the 

local domain ΩQ, in terms of the nodal unknowns ˆ ,u thus leading to the system of two linear 

algebraic equations  
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that can be written as 
ˆ

Q QK u F
 

(47) 

in which KQ, the nodal stiffness matrix associated with the local ΩQ, is a 2x2n matrix given by  
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and FQ is the respective force vector given by 
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(49) 

Consider that the problem has a total of N field nodes Q, each one associated with the 

respective local region ΩQ. Assembling Eq. (47), for all M interior and static – boundary field 

nodes leads to the global system of 2M x 2N equations  

ˆ Ku F  (50) 

Finally, the remaining equations are obtained from the N – M boundary field nodes on the 

kinematic boundary. For a field node on the kinematic boundary, a direct interpolation 

method is used to impose the Kinematic boundary condition as
 

j j
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ˆ(x ) (x )
n

h

k i ik k

i

u u


  u

 
(51) 

Or, in matrix form as 

ûk k k  u u  (52) 

with k = 1, 2, where ku  is specified nodal displacement component. Equations (51) are 

directly assembled into the global system of equations (50).  

Numerical Examples 

This section presents some numerical results for Cantilever beam and the Plate with a circular 

hole for different nodal configurations. The effects of the size of local support and 

quadrature/collocation domain are analyzed and compared with the exact solution. 

For a generic node i, the size of the local support ΩS and the local domain of integration Ωq 

are respectively given by  

,S S ir c 
 (53) 

,q q ir c 
 (54) 

in which Ci represents the distance of the node i, to the nearest neighboring node. For the 

analysis performed in this paper different values were considered for the local support domain 

size (αs), which vary from 4.0 to 10.0 with 0.5 increments, and the local 

quadrature/collocation domain size (αq) which vary from 0.4 to 0.9999 with 0.05 increments. 

Displacement and energy norms can be used for error estimation. These norms can be 

computed, respectively as 
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The relative error for u and  is given, respectively by 

num exact

u

exact

u u
r

u


  (57) 



num exact

exact

r
 




  (58) 

Cantilever Beam                                                       

A Cantilever beam showed in Fig. 6, is subjected to a parabolic traction at the free end. The 

principal properties are presented in Table 1 and the problem is solved for plane stress case. 

 

Table 1. Properties of Cantilever Beam 

                                               Parameters                              Values 

       

                                               Height, D                                12 m 

                                               Length, L                                48 m 

                                               Thickness, t                             1 m 

                                               Load, P                                    1000 N 

                                               Modulus of Elasticity, E         30 MPa 

                                               Poisson`s Ratio, ν                   0.3 

 

 
Figure 6.  Cantilever beam 

 

The parabolic traction and the moment of inertia is given by  
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3
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D
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The exact solution of the problem is given by [19]. The equations for the exact displacement 

are:  
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The GSMF was used for solving this problem, five regular nodal distributions were 

considered with a discretization of 33 x 5 = 165 nodes, 65 x 9 = 585 nodes, 97 x 13 = 1261 

nodes, 129 x 17 = 2193 nodes and 193 x 25 = 4825 nodes.  The first discretization is showed 

in the Fig. 7.  

 



 
Figure 7.  The regular nodal distribution of 33 x 5 = 165 nodes. 

 

Influence of the local support domain size (αs) 

 

This parameter must be greater than 1.0, the reason is that for the small values, the algorithm 

of MLS approximation may be singular and the shape function cannot be constructed, because 

there is not enough nodes for the interpolation. The influence of αs in the solution is obtained 

when the αq is fixed. 

 

Figure 8 shows the variation of relative error as a function of the size of the local support 

domain with 13 ratios which vary from 4.0 to 10.0 with 0.5 increments, and αq  = 0.5.   

 

 
Figure 8. Analysis of the mesh - free discretization parameter αs with αq = 0.5 defined in 

equation (53), carried out with five regular discretization of the cantilever – beam, with 

33 x 5 = 165, 65 x 9 = 585, 97 x 13 = 1261, 129 x 17 = 2193 and 193 x 25 = 4825 nodes.      

  

Figure 8 shows that the value of 4.5 for the local support domain (αs) presents low relative 

energy errors in the five regular discretization. The same graphic is obtained for the 

displacement. 

 

Influence of the local quadrature/collocation domain size (αq)  

 

This parameter must be less than 1.0. The reason is to ensure that the local sub – domains of 

the internal nodes are entirely within the solution domain, without being intersected by the 

global boundary. The influence of αq is obtained when the αs is fixed. 



Figure 9 shows the variation of relative energy error as a function of the size of the local 

quadrature/collocation domain with 13 ratios, which vary from 0.4 to 0.9999 with 0.05 

increments, and fixed on αq  = 4.5.   

 
 

Figure 9. Analysis of the mesh - free discretization parameter αq with αs = 4.5 defined in 

equation (54), carried out with five regular discretization of the cantilever – beam, with 

33 x 5 = 165, 65 x 9 = 585, 97 x 13 = 1261, 129 x 17 = 2193 and 193 x 25 = 4825 nodes.      

 

Figure 9 shows that the value of 0.5 for the local support domain (αs) presents low relative 

energy errors in the five regular discretization. The same graphic is obtained for the 

displacement. 

 

The Figure 10 and 11 presented the relative energy error suface for the nodal regular 

discretization with 97 x 13 = 1261 nodes,  in one direction is presented the variation from 0.4 

to 0.9999 for the size of local quadrature/collcation domain (αq) and the other diretion the 

variation from 4 to 10 for the local support domain (αs). 

 

 
Figure 10. Analysis of the mesh - free discretization for parameters αq and αs, carried out 

by the regular discretization of the cantilever – beam, with 97 x 13 = 1261 nodes. 

Especial focus for the αq parameter.  



 
 

Figure 11. Analysis of the mesh - free discretization for parameters αq and αs, carried out 

by the regular discretization of the cantilever – beam, with 97 x 13 = 1261 nodes. 

Especial focus for the αs parameter.  

 

The Figure 11 and 12 shows a relative energy error surface in percentage for two different 

angles, the error for αq = 0.5 is always the lowest; as for the αs there are different values, but 

the one that presents a greater efficiency is 4.5, because it results in a smaller CPU time 

consumption. Similar results were obtained for the relative displacement error.  

Plate with a circular hole     

Consider an infinite plate with a centered circular hole under unidirectional unit tension along 

the x1 direction, as represented in Fig. 12. Due to the symmetry of the problem about the 

horizontal and vertical axes, only a portion of the upper right quadrant of the plate is 

considered. The modeled section of the plate has dimensions b x b and the center circle has a 

radius a = 1, with b = 5a. The principal properties are presented  in Table 2 and the problem is 

solved for plane stress case. 

 

Figure 12.  Plate with a hole. 
 



Table 2. Properties of Plate with Circular Hole 

                                               Parameters                              Values 

       

                                               Hole Radius, a                        1 m 

                                               Height, D                                5 m 

                                               Length, L                                5 m 

                                               Thickness, t                             1 m 

                                               Modulus of Elasticity, E         100000 Pa 

                                               Poisson`s Ratio, ν                   0.25 

 

The exact stress distribution in the plate is given by 
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Where r and θ are the usual polar coordinates, centered at the center of the hole. A plane-

stress state is considered which leads to the following displacements  
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(67) 

The bottom and left edges of the plate are assumed as kinematic boundaries, with 

displacements specified on the bottom u2 (x1, x2  = 0) and left edges (u1 (x1 = 0, x1 = L, x2) = 0). 

The rigid and top edges are assumed as static boundaries, loaded by tractions computed from 

the stresses of the exact solution (63, 64 e 65) as tj = σij, in wich ni represents the components 

of the unit outward normal to the edge of the plate. 

 

The solve this problem, the plate was discretized by [17] with 9 nodes in the tangential 

direction and 11 nodes in the radial direction, see Fig. 13, with circular local supports. MLS 

approximation was considered, with the second order polynomial basis. GSMF was applied 

with 1 boundary collocation point per quadrant of the circular local domain. 

 



 
Figure 13.  Nodal distribution for the infinite plate of 11x9 = 99 nodes. 

 

The Figure 14 and 15 presented the relative energy error suface for the nodal regular 

discretization with 9 x 11 = 99 nodes,  in one direction is presented the variation from 0.2 to 

0.55 for the size of local quadrature/collocation domain (αq) and the other diretion the 

variation from 3.5 to 6.0 for the local support domain (αs). 

 

 
Figure 14.  Analysis of the mesh - free discretization for parameters αq and αs, carried 

out by the regular discretization of the plate with a circular hole, with 9 x 11 = 99 nodes. 

Especial focus for the αs parameter.  

 

The Figure 14 and 15 shows the relative energy error surface in percentage for two different 

angles, the error for the αs = 4.5 is always the least, for the αs there are different values but the 

one that presents greater efficiency is 0.5 because present less CPU time consumption. Similar 

results were obtained for the relative displacement error.  

 

 

 

 



 

Figure 15.  Analysis of the mesh - free discretization for parameters αq and αs, carried out by the 

regular discretization of the plate with a circular hole, with 9 x 11 = 99 nodes. Especial focus for the 

αq parameter.  

Conclusions 

The size of local support domain (αs) and local quadrature/collocation domain (αq) affect the 

accuracy and performance of GSMF local method. For the different nodal discretization this 

parameters have a great influence in the relative energy and displacement error; but it is 

especially small for one particular values.  

 

The special study realized for the cantilever beam discretized with 97 x 13 = 1261 nodes, 

presented greater variation in the relative energy error for different values of local support 

domain (αs) and local quadrature/collocation domain (αq). The parameter αs = 0.5 presented 

the lowest values independent of αq value.   

 

In this study were found certain values for the local support domain (αs) and local 

quadrature/collocation domain (αq) that generate less errors when the f method is applicate, 

these values are αs = 4.5 and αq = 0. It is necessary study others cases and other discretization 

especially for the plate with a circular hole.       
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