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Abstract 

Rupture of the thin fibrous cap of the atherosclerotic plaque is the primary cause of acute 

coronary syndrome accounting for more than half of all cardiovascular deaths. Fibrous cap 

thickness (FCT) is seen as critical to plaque vulnerability. In this study, the intra-observer 

reproducibility of FCT and the correlation analysis between FCT and intravascular optical 

coherence tomography (IVOCT) images features were implemented to find the relationship 

between FCT of lipid-enrich plaques and images information by two observers. We performed 

IVOCT pullbacks in consecutive series on 20 patients and selected 102 images containing lipid-

enrich plaques. Firstly, region of interests (ROIs) were extracted by an unsupervised fuzzy c 

means clustering (FCM) stage. Then, 32 features, which are associated with the structural and 

biochemical changes of tissue within the ROIs, were carried out using First order statistics 

(FOS), Gray level co-occurrence matrix (GLCM), Neighborhood gray tone difference matrix 

(NGTDM), Invariant moment (IM), Fractal dimension (FD) and Shape features (SF). Finally, 

the FCT in grayscale IVOCT images were manually measured by two independent observers. 

The intraclass correlation coefficient (ICC) was 0.80 for two different observers. The image 

features with ROI region and FCT showed a high correlation coefficient for both observers 

(r=0.88, p<0.001 and r= 0.91, p<0.001, respectively). The results suggest that the features of 

IVOCT images based FCT measurements may be useful to quantify the plaque cap thickness 

and vulnerability. 
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1. Introduction 

Coronary atherosclerotic plaque rupture is a major cause of acute coronary syndrome (ACS) 

[1-3]. Thin-capped fibroatheroma (TCFA) is recognized as a precursor for plaque rupture. The 

pathologic features of TCFA are a large lipid-enrich necrotic core (the maximum lipid arc>90o), 

a thin fibrous cap, and macrophage infiltration into the cap [2-8]. Postmortem studies have 

shown that a fibrous cap thickness (FCT) (<65um) prone to rupture, the critical threshold was 

widely accepted [9-11]. The composition and morphology of atherosclerotic plaques are 

considered to be more important in determining the risk of acute syndromes than the degree of 



luminal stenosis [12]. Therefore, detection and quantification of FCT of lipid-enrich 

atherosclerotic plaque are important for the assessment of plaque vulnerability in order to 

prevent acute events and monitor interventional treatments. 

 

Intravascular imaging modalities such as intravascular ultrasound (IVUS) and angiography do 

not have ability to accurately quantify some of the critical components of a vulnerable plaque 

such as FCT and macrophage content. Intravascular optical coherence tomography (IVOCT), 

however, is a unique high axial resolution (~10μm) imaging modality capable of characterizing 

these important morphological features of atherosclerotic plaque. IVOCT has demonstrated its 

capacity in the identification and quantification of FCT in clinical practice [8, 13, 14].  

 

According to the published consensus standards for IVOCT images, the plaque lipid core is a 

signal-poor region within an atherosclerotic plaque, with poorly delineated borders, and little 

or no signal backscattering. In contrast, the fibrous cap has a relatively homogeneous signal 

with high backscattering. Several semi-automatic and fully-automatic methods have been used 

to segment lipid and fibrous components by a supervised segmentation based on pixels [15, 16]. 

The two major drawbacks that hinder such image analysis are: (1) the procedure is cumbersome 

and time-consuming because of the large number of data points, and (2) manual segmentation 

as the gold standard are subject to a certain degree of variability between different analysts. 

Therefore, an unsupervised method based on FCM algorithm was introduced in the study to 

resolve the poorly delineated borders of the lipid core. 

 

The purpose of this study was to analyze reproducibility of FCT measurements in vivo, which 

were achieved by two independent observers. In addition, we determined the correction 

coefficient and statistically significant between FCT and IVOCT images features that might 

mimic lipid-enrich coronary atherosclerosis plaques to assess influence of feature set in 

quantization FCT. 

 

2. Materials and Methods 

2.1 Image dataset 

All 33 IVOCT clinical pullbacks of 20 patients were taken from Affiliated Drum Tower 

Hospital, Nanjing University between December 2015 and December 2016. The IVOCT 

images were acquired by using a commercially available Fourier Domain OCT (FDOCT) 

system (2.7F C7-XR, St. Jude Medical, St. Paul, Minnesota) and C7 Dragonfly catheter (St. 

Jude). The system is equipped with a near-infrared laser light source with a central wavelength 

of 1310 nm and full-width-at-half-maximum bandwidth of 80 nm. The imaging system provides 

an axial resolution ~10 um and a lateral resolution of ~30um in biological tissues. Scan 

parameters were set as 100 frames/sec, 54,000 A-scans/sec, pullback speed of 20 mm/sec, 

pullback length of ~54.2 mm. This study was approved by the institutional human ethics 

committee. All the patients have given explicitly informed consent. IVOCT images including 

lipid-enrich plaques from all pullbacks were selected from all databases. Out of these images, 

only segments containing lipid-enrich plaques were selected based on the published consensus 

standards [5] and the improvement of standard interpretation algorithm [17]. Total of 102 

images were selected for analysis. 



 

2.2 Manual measurement fibrous cap thickness  

Measurement FCT of atherosclerotic plaques is difficult because of its complex structures with 

discrete individual components, especially lipid-enrich plaque with seriously diffuse border. 

Therefore, observers of measurement were familiar with related work and had a deep 

knowledge of American College of Cardiology clinical expert consensus document on 

standards. 102 images were analyzed by two expert observers using an OCT system software 

(LightLab Imaging Inc., Westford, Massachusetts). The representative FCT measurements of 

IVOCT images in lipid-enrich plaque from two observers is shown in Figure 1. For each plaque, 

both observers selected the same images from the IVOCT run and measured the thinnest FCT 

two times, from which the final measurement value of FCT was calculated by averaging. 

Observer 1                   Observer 2 

  

      

   

 

 

 

 

 

 

 

Figure 1. The representative IVOCT images for measurements of FCT by observer 1 and 

observer 2 

 

3. Image Analysis 

3.1 Pre-processing 

Consider the IVOCT images in polar coordinates  , r  where   is angle and r is depth. 

 ,I i j  represents intensity of each pixel at row i  and column j . Ring-area (RA) and Lumen 

are automatically segmented by processing the following four steps. The results of each step 

are shown in Figure 2. 

1. Remove guide-wire and artifacts; 
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where  ,I i j  refers to the average of pixel value, and wc  and wr  are the thresholds. 

The parameter values 50wc  and 10wr   used in the paper were determined based on 

catheter size. 

2. Binarization images processed by adaptive threshold OSTU’s method algorithm and by 

morphological connect neighborhood and area constraint [18]; 

3. Lumen was automatically segmented by connecting the nonzero pixels, interpolating pixels 

of full zero row, and then expanding lumen to 1mm to take into account the limited 

penetration depth of OCT system; 

4. The polar images were subsequently converted to a cartesian coordinate in order to 

reconstruct an image that preserved the true morphology of visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of the using fully-automated segmentation procedure. Image (a) shows 

original raw polar domain image; Image (b) show the guide-wire and catheter artifacts remove 

result partially; Image (c) illustrates the application of the Otsu’s method, morphological 

operations and the area constrain; Image (d) shows lumen segmentation result; Image (e) and 

(f) show the RA segmentation results before and after scan-conversion respectively. 

 

3.2 Region of interest (ROI) extraction 

Compared to fibrous cap, necrotic lipid core exhibits a lower signal density and a more 

heterogeneous back-scattering [19, 20]. Lipid core area has the following major characteristics: 

diffusely bordered, signal-poor regions with overlying signal-rich bands. In this paper, FCM 

method was selected to extract the cap of fibrous components [21]. Once the cap of fibrous 

components was segmented, the lipid core borders were subsequently obtained by arc angle of 

lumen contours. In the paper, the research problem with the green contour model were 

formulated as shown in Figure 3(a). The contour of a cap of fibrous component in the 2-D image 

was represented by two curves along x-axis and y-axis in Figure 3 (b) and (c). A simple 

polynomial curve fitting algorithm was proposed in order to smooth two curves. Next, the key 

(f) 



problem was to locate the two points pointed by the white arrow to extract ROI. We used the 

simple geometric constraints: the catheter center set as an origin, four equal regions were 

divided, the same arc angle in Figure 3 (b) and (c) are the points indicated by white arrow in 

Figure 3 (a). Figure 4 gives three representative results of the ROI in different pullbacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The cap of fibrous component extraction algorithm using the FCM combination with 

geometric constraint. The green contour of image (a) shows the cap segmentation result based 

on the FCM algorithm. Image (b) and (c) display the fitting results using polynomial curve 

fitting algorithm. The green line and red line represent the row and column index value before 

and after polynomial curve fitting, respectively. Image (d) shows the cap contours before and 

after polynomial curve fitting. 

 

 

 

 

 

 

 

  

 

Figure 4. Representative results of the ROI on three frames from different pullbacks. Image 

(a), (b) and (c) show the log image with lipid-enrich plaques in the cartesian coordinate. Image 

(c), (d) and (f) show the ROIs (red regions) corresponding to the image (a), (b) and (c), 

respectively. 

 

3.3 Feature extraction 

Texture features and shape parameters were extracted from ROIs. Texture refers to the spatial 

interrelationship and arrangement of the basic elements of an image [22, 23]. Texture features 

have to be derived from the gray images because the spatial interrelationships and the 

arrangements of the image pixels are seen as variations in the intensity patterns or gray tones 

visually. Although it is easy for humans to recognize different kinds of textures, it is quite a 



difficult task to define and interpret the textures automatically by computer algorithm. Shape is 

also an important feature for medical image [12]. In this paper, six different feature sets 

composing of a total 32 features were listed in table 1. The implementation details for the 

texture feature and shape parameters and referred papers are shown below: 

Table 1. Feature sets information and corresponding references. 

Feature sets Feature name Reference 

FOS mean, variance, median, skewness, kurtosis [23] 

GLCM 
correlation, contract, dissimilarity, energy, 

entropy, homogeneity, maximum probability. 
[24] 

NGTDM busyness, contrast, complexity, coarseness, texture length [25] 

IM I1,I2,I3,I4,I5,I6,I7 [26] 

FDTA H1 , H2 , H3 , H4 [23] [27] 

SP 
eccentricity, perimeter, majoraxislength (mal), 

minoraxislength (mil) 
[23] 

 

3.4 Statistical analysis 

Inter-observer agreement and intra-observer reproducibility estimates were analyzed using the 

two paired t-test, intraclass correlation coefficient (ICC), and Bland Altman analyses estimating 

95% limits of agreement (LOA). LOA was defined as mean 1.96±SD of absolute difference 

by Bland–Altman method. Generally, an ICC <0.4, between 0.4-0.75, and >0.75 indicates poor, 

moderate, and excellent agreement, respectively [28]. Initially, univariate linear regressions 

were performed between each thickness measure and IVOCT image features. Direct linear 

regression was appropriate here, because the IVOCT images sampling interval was far more 

than 0.2 mm and the data at nearby points were independent. In addition, for each of the 102 

thickness measures, multivariate linear regressions were performed against all 32 image 

features. Multiple correlation coefficient between variables was estimated using Pearson’s 

correlation coefficient (r). For all test, a two tailed p value<0.05 was considered statistically 

significant. All statistical analysis was performed with SPSS statistical software (IBM SPSS 

Statistics for Windows, Version 19.0. IBM Corp., Armonk, New York). 

 

4. Result  

The ICCs (0.99 for observer 1 and 0.99 for observer 2) of FCT measurement showed excellent 

agreement and reproducibility (ICC=0.80 between observer 1 and 2). FCT11, FCT12 

represented two measurement results by observer 1, FCT21, FCT22 were the measurement 

results by observer 2, mFCT1 and mFCT2 were the mean by observer 1 and 2. The Bland–

Altman plots showed LOAs of different FCT measurements from two observers (Figure 5). The 

LOAs for FCT11 vs FCT21, FCT11 vs FCT22, FCT12 vs FCT21 and FCT12 vs FCT22 were 

110, -55um (p=0.016), 130, -43um (p=0.03), 100, -66um (p=0.008) and 110, -53um (p=0.015), 

respectively. 

  



 

 

 

 

Figure 5. Comparison of the FCT measured by observer 1 versus observer 2 (left panels) Bland-

Altman test for two observers in measurement of FCT (right panels). 

  



 

 

Table 2. The correction coefficient of mFCT and univariate image features by two observers 

 mFCT1 mFCT2  mFCT1 mFCT2 

feature name r p-value r p-value  r p-value r p-value 

mean 0.62 <0.001 0.64 <0.001 
texture 

length 
0.39 <0.001 0.38 <0.001 

variance 0.48 <0.001 0.49 <0.001 I1 0.53 <0.001 0.54 <0.001 

median 0.45 <0.001 0.48 <0.001 I2 0.13 0.1848 0.22 0.03 

skewness 0.48 <0.001 0.51 <0.001 I3 0.33 <0.001 0.33 <0.001 

kurtosis 0.52 <0.001 0.53 <0.001 I4 0.03 0.73 0.05 0.59 

correlation 0.59 <0.001 0.61 <0.001 I5 0.01 0.97 0.13 0.19 

contract 0.58 <0.001 0.61 <0.001 I6 0.36 <0.001 0.28 <0.001 

dissimilarity 0.59 <0.001 0.62 <0.001 I7 0.47 <0.001 0.50 <0.001 

energy 0.60 <0.001 0.64 <0.001 H1 0.16 0.12 0.08 0.43 

entropy 0.49 <0.001 0.48 <0.001 H2 0.16 0.12 0.08 0.41 

homogeneity 0.33 <0.001 0.35 <0.001 H3 0.45 <0.001 0.44 <0.001 

maximum 

probability 
0.34 <0.001 0.34 <0.001 H4 0.01 0.95 0.06 0.56 

busyness 0.23 0.01 0.25 0.0112 
eccentric

ity 
0.17 0.09 0.27 <0.001 

contrast 0.37 <0.001 0.36 <0.001 
perimete

r 
0.08 0.42 0.16 0.10 

complexity 0.06 0.52 0.16 0.1 mal 0.16 0.11 0.26 0.01 

coarseness 0.39 <0.001 0.39 <0.001 mil 0.30 0.0021 0.41 <0.001 

 

Table 2 reports statistically significant (p) and Pearson correction coefficient (r) between 

univariate feature and mFCT. The correction coefficient is generally low, where the lowest and 

highest values are 0.62 (mean) and 0.01 (I5 and H4) from observer 1 and 0.64 (mean and energy) 

and 0.05 (I4) from observer 2. Bold p-values represent no statistically significant between two 



variable values. 

 

Similarly, Table 3 shows statistically significant (p) and Pearson correction coefficient (r) 

between multivariate feature sets and mFCT. Statistically significant results were observed in 

both two groups i.e. individual group feature set and the fusion feature set. The lowest 

correction coefficient of individual group appeared at shape parameter group (feature set 6), 

which were 0.48 and 0.58 for observer 1 and 2, respectively. The phenomenon was in turn 

confirmed in Table 2 that the correction coefficient of four shape parameters were overall lower 

than others. In the contrast, the highest correction coefficient of individual group was observed 

in feature set 2, which were 0.78 and 0.80, respectively. For both groups, Pearson correlation 

coefficient of the fusion feature sets for observers 1 and 2 were 0.88 and 0.91, which better than 

any individual group feature set.  

 

Table 3. The correction coefficient of mFCT and multivariate image features by two observers 

Feature set 
mFCT1 mFCT2 

r p-value  r p-value 

FOS 0.67 <0.001 0.68 <0.001 

GLCM 0.78 <0.001 0.80 <0.001 

NGTDM 0.68 <0.001 0.74 <0.001 

FD 0.74 <0.001 0.72 <0.001 

IM 0.52 <0.001 0.62 <0.001 

SP 0.48 <0.001 0.58 <0.001 

Fusion feature sets 0.88 <0.001 0.91 <0.001 

 

5. Discussion 

It is an important role of FCT as indicators of vulnerable plaques which could potentially guide 

appropriate surgical treatment such as percutaneous coronary intervention (e.g., balloon 

angioplasty or stent placement). Therefore, there is a strong desire to treat these lesions before 

they cause harm. The reliable examination of these indicators of atherosclerotic plaques will 

ultimately determine the clinical value of IVOCT, depending on the application of meaningful 

and reproducible methods. The main findings of the present study are the excellent inter-

observer agreement of the manual assessment of FCT and excellent intra-observer 

reproducibility in the FCT measurement. In addition, the high correction between the feature of 

ROIs and mFCT measured by two observers, which show that IVOCT image feature is able to 

provide more information in quantization FCT to promote both the computer-aided routine 

clinical use and analysis of large-scale data sets from clinical trials in vulnerable plaque. 

 

The current accepted universal method for assessing FCT in vivo using IVOCT images is based 

on single measurement of the thinnest portion of the fibrous cap [14, 29]. In practice, the 

extensive clinical image data in vivo were usually analyzed manually by expert analysts. Indeed, 

the excellent inter-observer agreement of IVOCT images to measure the FCT manually, have 

been previously reported. Kim et al. [30] performed first in vivo investigation in the inter-

observer agreement (ICC=0.99) and intra-observer reproducibility (ICC=0.49) of FCT by 4 

independent observers. Subsequently, Gerbaud et al [31] reported intra-observer reproducibility 



of FCT was moderate (ICC=0.48). In the present study, excellent inter-observer agreement 

resulted for FCT measurement, with ICC of 0.99 was reached in the analysis and was similar 

to literature previously. Greatly, excellent intra-observer reproducibility (ICC=0.80) was 

achieved for FCT measurement, higher than the result of the previous mentioned studies. 

Recently, Kini et al [17] studied intra-observer reproducibility before and after developing the 

lesion assessment criteria with 170 pullbacks. The result shown that a significantly higher level 

for FCT measurement, with ICC of 0.82 compared with the observed in our study of 

reproducibility in vivo measurement. However, these independent observers extensively 

learned the development of standard interpretation criteria formulated which significantly 

provided the level of intra-observer reproducibility. The lower intra-observer reproducibility in 

our study may, in part, be explained by the heterogeneity in the coronary plaques imaged. 

Indeed, the patients in our study are more likely to have lipid-enrich, complex plaques, with a 

higher potential for intra-observer variability. Although learning the standard interpretation 

algorithm, a limited pullback data may cause a low learning outcomes result. Therefore, more 

data are more likely to represent a true reproducibility value, based on the current commercial 

available IVOCT systems. 

 

Although others’ and our studies had been certified the FCT measurement may be repeatable 

by independent observer manually, few literates focus on the interrelationship between IVOCT 

image feature information and FCT. Such an idea will help in enhancing the significance of 

noninvasive coronary artery tests in the identification of FCT and assessment the risk factors of 

stroke. Thus, in the study, we first analyzed the correct coefficient and statistically significant 

between FCT and the six group image features based on the priori knowledge that the more 

higher the correction coefficient, the better elucidate the texture feature was used to quantify 

FCT. 

 

The results in this study (Table 2 and Table 3) indicate significant relationships between feature 

sets and FCT. The r value of the univariate regressions indicate that only several single texture 

feature factor are dominant in determining FCT, there are mean, contract, dissimilarity, energy, 

entropy, homogeneity, maximum probability (Table 2). On the other hand, the individual feature 

set of the multivariate regressions are all highly significant, and the correlation coefficients are 

substantially higher as well (Table 3). Thus, thickening seems to be influenced by multiple 

aspects of the texture feature and shape parameters. This is to be expected, the texture features 

are postulated to act through their influence on the spatial interrelationships and arrangement 

of the gray image, and it is reasonable that each of these FCT (the minimum distance implied 

in the spatial arrangement) would be influenced by texture feature and shape parameters. Best 

feature sets were the GLCM feature set, followed by the FDTA. In general, all individual feature 

set performed in a range of about 0.52-0.78 and 0.62-0.80 for observer 1 and 2, except of the 

shape parameters that performed much worse. In order to enhance the influences of feature set, 

the six feature sets were combined, by connecting the feature one by one. Fusing results of the 

six different feature sets, improved the correction results obtained by the individual feature sets, 

reaching an average correction coefficient of 0.88 and 0.91 for the observer 1 and 2. The 

benefits of fusion results are more obvious in the case where there is no dominant best feature 

sets, as the case with the features extracted from the lipid-enrich plaque images in this study. It 



is noteworthy in this respect that the signs of the regression coefficients in the univariate and 

multivariate regressions in Tables 2 and 3 are consistent. 

 

Study Limitations 

In multivariate regression analysis, correlation among the independent variables is one common 

problem. The problem may be an influential factor if the primary purpose of the regression is 

to identify important explanatory variables that might play a causal role. The estimated 

regression coefficients for such correlated variables can be different. This problem was not 

involved and discussed in our case. Feature selection method with deleting the possible 

correlations between the independent variables are suggested in the future research. 

In computer vison analysis, efficiency measured by the computational time is another common 

problem. Computational times for preprocessing, lumen segmentation, scan-conversion and 

ROI extraction were recorded by matlab code, especially scan-conversion spent a long time 

(two hours for 271 images) in the study. As such, further coding and implementation in a faster 

language (e.g. C/C++) would significantly reduce computational time, possibly achieving the 

analysis of a multiple IVOCT images in a time a few minutes. 

 

Lack of histology data as the golden standard in the FCT measurement is the third problem. 

Given that IVOCT manual FCT measurement of atherosclerotic plaques is subject to some 

inter-observer variability, the use of a third reader is always required in case of disagreement 

between two readers. As a matter of fact, only FCT measurement using a large series of 

histological samples would be able to give more objective and detailed results. However, even 

if histology can provide a stronger ground truth, the correct registration with IVOCT images 

can be a challenge due to histological slice thickness and helicoidal IVOCT data acquisition 

[32, 33]. Therefore, a large amount of histological data would be required to achieve enough 

statistical analysis result, which is not currently available.  

 

Conclusion 

We discussed the variabilities between observers for quantifying the FCT in human coronary 

arteries based on IVOCT using manual measurement. Intra-reproducibility result demonstrate 

that FCT was repeated by manual measurements in lipid-enrich atherosclerotic plaque. In 

addition, we analyzed the relationship between FCT and image feature. The regression result 

demonstrated the fusion feature played an important role in quantification FCT for online 

identification of high-risk plaques.  
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