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Abstract 

In the structural dynamic optimization procedure, many repeated analyses are conducted to 
evaluate dynamic performance of successively modified structural designs. It is noted that, the 
reduction of degrees of freedom is more important for computational effort in dynamic 
problems than in static problems. This paper focuses on the reanalysis for structural dynamic 
problem in the framework of combined approximations (CA) method. A new procedure for 
structural dynamic reanalysis is developed based on iteration and inverse iteration method 
with frequency-shift in mode superposition method, and linear combination acceleration is 
also used to reduce the high computational cost of structural reanalysis. Frequency-shift factor 
is calculated first, and then combined approximations method corrected by the given factor 
allows calculating higher modes accurately. After higher modes are obtained, mode expansion 
and dynamic response can be described accurately. Numerical example is presented to 
demonstrate the accuracy of the proposed method. Excellent results can be obtained when 
large modifications are made. 

Keywords: Frequency-Shift, Combined Approximations, Mode Superposition, Dynamic 
Reanalysis. 

Introduction 

In order to make a design structure satisfy the predetermined demands, such as the structural 
dynamic design procedure, usually the designer will modify the structure repeatedly. The 
dynamic responses changed by the modifications of parameters on the structure. In the 
structural optimization, dynamic analyses are repeated in successively modified structure 
design procedure. Research of how to reduce the computational cost has made sense. 

Reanalysis technology was established to evaluate responses of changed structures without 
complete analysis in process of design and optimization[1]. Reanalysis of structure for 
displacements and stresses have been discussed since the 20th century[2]. Combined 
Approximations (CA) approach is one of the most effective methods for solving static 
displacement equations[3]. After CA method was founded, extended CA methods were 
proposed[4]. IFU method is proposed for general low-rank local modifications, including 
boundary modifications and non-boundary modifications[5]. 

Reanalysis methods for vibration problems have been presented since the early 21st 
century[6]. Kirsch grafted the CA approach to solve eigenproblems [7]. Combining CA and 
Rayleigh quotient, an extended CA method of eigenproblem for large changes was presented 



by Chen[8]. A Modified Combined Approximations(MCA) method for solving large-scale 
structure dynamic problem was discussed[9]. With a suitable frequency shift coefficient, 
FSCA approach allowed to calculate higher modes accurately[10]. 

Some studies in the literature have approached the structural dynamic reanalysis problem for 
large perturbations in the structural parameters. A method for the dynamic reanalysis of 
structures subjected to deterministic or stochastic loads is presented by Cacciola [11]. The CA 
approach, developed originally for linear static reanalysis, is also used for dynamic reanalysis 
of structures by Kirsch[12, 13]. The approach is based on the integration of several concepts 
and methods, including series expansion, reduced basis, matrix factorization, and Gram-
Schmidt orthogonalizations. Based on epsilon-algorithm, the dynamic response reanalysis 
method has been developed by Chen[14]. In his computational process, the Neumann series 
expansion was used to construct the vector sequence for epsilon-algorithm iterative form. 

In this study, a linear dynamic reanalysis process using FSCA method is proposed. The 
formulations of mode superstition based on CA method with frequency shift are expressed, 
and then the application of this algorithm to a truck body finite element analysis is described. 
Conclusions are discussed at last. 

Linear dynamic analysis by mode superposition 

Linear dynamic analysis consider the equations of motion for a system subjected to external 
dynamic forces 

 t t t t+ + =M u C u K u R&& &  (1) 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. The 
displacement vector t u , the velocity vector t u& , the acceleration vector t u&&  and the load vector 
t R are functions of the time t . 

In practical analysis, the common procedures can be solved by mode superposition method, 
where the equilibrium equations are transformed in to a form in which only limited modes are 
considered. In this approach a change of basis from the finite element nodal displacements to 
the eigenvectors of the generalized eigenproblem is preformed prior to the time integration. 
The following transformation is used. 

 t t=u Φ X  (2) 

where Φ is n n× transformation matrix and components of t X are the modal coordinates. 
With the transformation, new system stiffness, damping and mass matrices are obtained, 
which are much smaller scale than those in the original system. And then, a new dynamic 
equation is obtained. 

 T t T t T t T t+ + =Φ MΦ X Φ CΦ X Φ KΦ X Φ R&& &  (3) 

where  

 T=M Φ MΦ%        T=C Φ CΦ%        T=K Φ KΦ%        t T t=R Φ R%  (4) 



The transformation matrix Φ is the orthogonalized modal displacement solution of the free 
vibration.  

 T=I Φ MΦ                  T=Λ Φ KΦ  (5) 

where I is the identity matrix and Λ is the spectral matrix. Then the equilibrium equation 
correspond to the orthogonalized modal displacements is described. 

 t T t t T t+ + =X Φ CΦ X Λ X Φ R&& &  (6) 

When damping effects are not considered, Eq.(6) becomes 

 t t T t+ =X Λ X Φ R&&  (7) 

The individual equation is of the form 

 t t T t
i i i iλ+ =X X φ R&&  (8) 

The initial conditions at time 0 are obtained by Eq.(9). 

 0 (0)T=X Φ M u                             0 (0)T=X Φ M u& &  (9) 

Mode reanalysis by FSCA method 

In practice, natural frequency has the same mean with eigenvalue in mathematics. The 
equation of the first m eigenvalues and eigenvectors can be expressed: 

 (0) (0) (0) (0) (0)

n n n m n n n m m m× × × × ×
=K Φ M Φ Λ  (10) 

where (0)Λ denotes the matrix of the first m eigenvalues and (0)Φ is the corresponding matrix 

of  first m eigenvectors, n is DoFs for the initial system. Assuming there are changes in the 
stiffness and mass matrices, respectively. 

 (0) (0)= + Δ = + ΔK K K M M M  (11) 

The eigenproblem of the changed structure can be rearranged: 

 1

n n n m m m n n n m

−

× × × × ×
=K Φ Λ M Φ  (12) 

whereΛ  denotes the matrix of the first m eigenvalues andΦ is the corresponding matrix of  

first m eigenvectors for the changed structure.  

Eq.(12) is rearranged using a frequency-shift factor: 
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n m n n n m m m
μ μ− − − −

× × × ×
= − −Φ M K K Φ Λ I

  (13) 



Given an initial ( )iΦ , we can compute 
( 1)i+Φ by solving iterative formula as Eq.(14). 

 ( 1) 1 1 ( ) 1 1( ) ( )i i
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Assuming that a linear expression of ( )iΦ , where 0,1, , 1i s= −L , can be close to the exact 

solutions, the linear expression is given: 
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Premultiplying Eq.(12) by TR , a condensed equation is got and expressed in the following 

form: 

 [ ] [ ]T T

ms ms ms m ms ms ms m m m× × × × ×
=R K R X R M R X Λ  (16) 

The matrices[ ]TR K R and[ ]TR M R of the condensed system are much smaller than those in 

the initial system. So we can calculate a new ms ms× system in Eq.(16) instead. The 
computing time can be greatly reduced.  

Frequency shift consideration 

For the purpose of improving the accuracy of the higher modes calculation and eliminate the 
numerical errors, the approximate modes and basis vectors are recalculated using Gram-
Schmidt orthogonalizations in FSCA method 

The advantage of the shift factor is that more accuracy results are obtained. In FSCA method, 
to improve the accuracy of higher modes calculation, the highest mode vector is chosen to 
generate the frequency shift factor. 
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where ( )

1
, 0, , 1i

m
n

i sϕ
×

= −L is the highest mode in the i th iteration. Considering the increasing 

computational cost for ( 1)iμ + calculations, the Rayleigh quotient Eq.(18) is chosen for the 
frequency-shift factor in FSCA method instead of Eq.(17). The numerical example 
demonstrates that the frequency-shift factor is effective. 
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Numerical example 

A truck body dynamic reanalysis numerical example, as shown in Fig.1, is given to 
demonstrate the accuracy of the FSCA method for large scale dynamic reanalysis. The 
objective is to evaluate the response of the seat for loading on the left rear wheel. The truck 
body contains 1896 shell and solid elements, 1944 nodes and 11664 degrees of freedom. The 
time step is 0.1s. The Young’s modulus of the material is 112.1 10E Pa= × ; the mass density 
is 3 37.8 10 /kg mρ = × ; the Poisson’s ratio is 0.3. Assuming that the response of the initial 
structure is known, the modified response has been evaluated by the FSCA approach with 
only 3 basis vectors.  

The resulting vertical displacement, velocity and acceleration at the seat installation point are 
shown in Fig.2-4. It is observed that good agreement is obtained between solutions of the 
FSCA formulations and Lanczos formulations of the modified structure.  

 

         Figure 1. Modifications of truck body   Figure 2. Comparison of displacement responses 

 

Figure 3. Comparison of velocity responses     Figure 4. Comparison of acceleration responses 



Conclusions 

In this study, a new reanalysis technique, the FSCA method has been developed for dynamic 
reanalysis with respect to improve the solution accuracy in case where global large 
modifications are made. Numerical example is shown for the demonstrations of accuracy in 
this work. It can be seen that the accuracy approximate solutions were achieved with FSCA 
method with large changes.  

When general optimization problems are considered, a lot of research has been performed to 
reduce the computational cost in repeated analysis of modified structures. It is expected that 
the FSCA method could reduce the overall computational cost in problems where repeated 
analyses are needed. 
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