
 

Probabilistic fracture toughness prediction of composite materials  

†Yan Li¹*, Min Zhou2 
1Department of Mechanical and Aerospace Engineering, California State University, Long Beach, USA. 

2The George W. Woodruff School of Mechanical Engineering, School of Materials Science and Engineering 
Georgia Institute of Technology, Atlanta, GA 30332-0405, U.S.A. 

*Presenting author: yan.li@csulb.edu  
†Corresponding author: yan.li@csulb.edu 

Abstract 

One of the biggest challenges in material sensitive design is to predict the variation of key 
material properties such as strength and fracture toughness. It has been proved that the 
stochastic nature of microstructure is the primary reason for fracture toughness scatter. 
Although Weibull distribution has been widely used to determine the probability of material 
fracture, its role has been confined to fitting fracture toughness data rather than providing 
predictive insight of material fracture toughness and the magnitude of scatter. Besides, the 
Weibull parameters which are obtained through curve fitting carry little physical significance. 
In this paper, an integrated computational and analytical model is developed to predict 
fracture toughness in a statistical sense. The Weibull distribution parameters are correlated 
with the statistical measures of microstructure characteristics and the statistical 
characterization of the competition between crack deflection and crack penetration at 
matrix/reinforcement interfaces. The approach and model will lead to more reliable material 
design through microstructure tailoring. 
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Introduction 
 
Fracture toughness of a composite material is not a deterministic property. This is primarily 
due to the stochastic nature the crack-microstructure interactions [1-3]. Most of the existing 
probabilistic models for fracture toughness prediction only consider near crack-tip stress 
states [4-6]. Information regarding microstructure of its microstructure as well as the 
activation of different fracture mechanisms during characteristics and failure mechanisms 
associated with the crack propagation process is not explicitly included in the model 
formulations. He and Hutchinson [7] used the energy criterion to analyze the behavior of a 
semi-infinite crack perpendicular to an infinite planar interface in a symmetrically loaded, 
isotropic bi-material. They concluded that crack deflection occurs when  
 
 / / .p in pdJ J     (1) 
 
Here, dJ  and pJ  denote the energy release rate for crack deflection and crack penetration, 
respectively. Similarly, in  and p  denote the surface energy of the interface and 
reinforcement, respectively. 
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Gupta et al. [8] extended He and Hutchinson’s work to anisotropic materials and developed a 
strength criterion for crack deflection and validated their analysis using laser spallation 
experiments. Subsequently, Martinez and Gupta [9] improved the criterion such that it does 
not require any assumption concerning crack extension ratio by using a quasi-static 
approximation and by assuming that deflection occurs under constant loading. Although these 
models reveal some of the fundamental relations that govern the behavior of cracks as they 
approach interfaces, the analyses concern the interaction between a single crack and an 
infinite, flat interface. These criteria cannot be directly applied to real composite materials 
analysis due to the following reasons. First of all, the reinforcements in real composite 
materials have finite size. Therefore, the interface cannot be considered as infinite. Besides, it 
has been proved that the shape of reinforcements also influence the activation of different 
fracture mechanisms. The shape of reinforcements needs to be quantified and included in the 
criterion as well. 
 
Based on the previous work, Li and Zhou [10] further extend He and Hutchinson’s criterion 
by including the effects of finite reinforcement size, reinforcement shape and distribution in a 
two-phase composite material. The criterion is parameterized by 
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to determine the activation of the two competing failure mechanisms. Specifically, interface 
debonding, which is activated by crack deflection, is predicted when 0U  . Otherwise, crack 
penetration induced reinforcement cracking will be activated instead.  In the above relation, 
  is the roundness of the reinforcement. s  represents the characteristic reinforcement size. 

in  and p  are the surface energies of the interface and reinforcement, respectively.  
 
Based on the previous work, an integrated computational and analytical model is introduced 
which allows the possible range of fracture toughness values to be predicted as function of 
microstructure. The Weibull distribution parameters are directly correlated to the two-point 
correlation functions as well as the quantification of fracture mechanisms. These relations can 
be used for material reliability design by controlling the fracture toughness scatter through 
microstructure tailoring. 

 

Cohesive Finite Element Method (CFEM) based fracture toughness prediction 

The edge-cracked square specimen under Mode I tensile loading in Fig. 1 has a size length of 
3.65 mm. The microstructure region has a length of 2 mm, width of 1 mm and a pre-crack 
length of 0.73 mm. A boundary velocity of v 5 mm/s  is imposed at the top and bottom 
edges. The remaining edges of the specimen are traction-free. Conditions of plane strain are 
assumed to prevail. In the following analysis, we consider TiB2 reinforced Al2O3 composites. 
 
Cohesive elements are embedded along the edge of each bulk element in the microstructure 
region. Bilinear traction separation law is employed. This law is derived from a potential  
which is a function of separation vector   through a state variable defined as 



   2 2

n nc t tc       . This variable describes the effective instantaneous state of mixed-

mode separations. Here, n  n Δ  and t  t Δ  denote, respectively, the normal and 
tangential components of  , with n and t  being unit normal and tangent vectors. nc  is the 
critical normal separation at which the cohesive strength of an interface vanishes under 
conditions of pure normal deformation ( t 0  ). Similarly, tc  is the critical tangential 
separation at which the cohesive strength of an interface vanishes under conditions of pure 
shear deformation ( 0n  ).   tracks instantaneous mixed-mode separations during both 
loading and unloading. Apparently, 0   corresponds to 0   (undeformed state or fully 
unloaded state) and 1   implies complete separation, i.e. total debonding of the cohesive 
surface pair. 

 

 

 

                                       Fig. 1 Specimen configuration used in the analysis. 
 

CFEM models with traction-separation laws with finite initial stiffness have two competing 
requirements on element size. The upper bound requires that the element size must be small 
enough to accurately resolve the stress distribution inside the cohesive zones at crack tips. The 
lower bound, on the other side, requires the cohesive surface induced stiffness reduction be 
small, such that the wave speed in the solid is not significantly affected due to the presence of 
the cohesive surfaces. For the conditions of this paper, the preferred range of the element size 
is 7 14m h m   , allowing the convergence criterion in Tomar et al. [11] to be satisfied. 
 

For brittle materials, the fracture toughness ICK  is related to the energy release rate ICJ  as 
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where E  and   are the effective Young’s modulus and effective Poisson’s ratio of the 
heterogeneous material, respectively. E  and   are estimated by using the Mori-Tanaka 
method as 
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where K  and   are effective bulk and shear moduli. K  and   are calculated according to 
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Here, rK  and r  represent the bulk and shear modulus, respectively for Al2O3 ( 0r ) and 
TiB2 ( 1r  ). 
 

To account for inertia effects, a fully dynamic deformation formulation is used. Within this 
framework, the path-independent J-integral is (Moran & Shih [12]) 
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where t is the traction on a surface with normal N, u is the displacement, ε  denotes the strain 
and   is the mass density.  
 
The J value in eqn. (6) is integrated along an arbitrary closed contour as shown in the dashed 
line in Fig. 1. Six snap shots of the crack propagation process in a microstructure with circular 
TiB2 reinforcement at a loading velocity of v 5 mm/s  is illustrated in Fig. 2(a). The 
corresponding histories of J and K are shown in Fig. 2(b). Fracture initiates in the Al2O3 
matrix at 105.0 µs, this event defines the initiation toughness i

ICK . The crack is arrested by a 
TiB2 particle and pauses at the Al2O3/TiB2 interface for approximately 42.5 μs. During the 
pause, J increases rapidly. At approximately 149.2 μs, as a result of the higher level of driving 
force J, the crack penetrates the TiB2 particle. Subsequently, the crack propagates rapidly, 
causing J (and therefore K) in Fig. 2 (b) to plateau for the remainder of the analysis. The 
average value of K during this period is taken as the propagation toughness ICK . 
 



 
 

Fig. 2 History of (a) crack propagation in Al2O3/TiB2 and the evolution of corresponding J 
and K.   

 
From the energy point of view, a crack would grow when the energy available in the elastic 
stress field reaches the energy required to form new fracture surfaces. For crack propagation 
in a composite material as shown in Fig. 3, new crack surfaces can be created in the matrix, 
along the interface and in the enforcement. Therefore, ICJ  can be stated as  
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where fU  is the total energy released. A Wt  is the total projected crack surface area with W  
and t  being the crack projection length and specimen thickness, respectively. /L W   is a 
function which captures the tortuosity of the entire crack path. Based on the microstructure 
configuration discussed before,   depends on the R  and f . The detailed calculation of inH , 

mH  and pH  are discussed in detail in Li and Zhou [13].   
 

 
 



Fig. 3 Schematic illustration of crack lengths associated with different mechanisms in two-
phase composite materials.  

 
 
Probabilistic fracture toughness analysis 
 
A typical two-parameter Weibull distribution function is in the form of  
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Here fP  is the probability of fracture. K  and 0K  are the fracture toughness ICK  measured 
from experiments and the normalization factor, respectively. m  is defined as the shape 
parameter. The parameters m and 0K  are obtained through a linear regression fit to N data 
points of K . In order to have a good statistical representation of the stochastic fracture 
process, 20N   is preferred. 
 
In most of the existing probabilistic models, the fracture toughness data is obtained first and 
then then fitted by Weibull distribution function [14-16]. The problem of these probabilistic 
models is that they do not allow the scatter of fracture toughness data to be predicted prior to 
the experimental testing. Without the material sensitivity information, it is hard to determine 
the number of tests required to obtain a good estimate of probability of material fracture.  

 
Although Weibull parameters in Eqn. (8) are fitting parameters which carry little physical 
significance, their correlations with microstructure characteristics and fracture mechanisms 
can provide valuable insight to material sensitive design without doing repeated experimental 
testing.  
 

 



 
Fig. 4 Fracture probability distribution predicted from CFEM simulations [2] for 

microstructures with randomly distributed non-overlapping circular particles.  
 
 
In the following discussions, the K  values in Eqn. (8) are calculated from Eqn.(3), Eqn. (6) 
and Eqn. (7).  Microstructures with non-overlapping circular reinforcements are considered. 
Fig. 4 compares the probability of fracture fP  for microstructures with systematically varying 
particle radius ( 20 μmR  , 30 μm  and 40 μm ) and volume fraction ( f   10%, 15%, 20% 
and 25%). It is observed that microstructures with smaller radius tend to have higher fracture 
toughness and lower probability of fracture for all the volume fractions considered. The same 
trend is observed from the CFEM (Cohesive Finite Element Method) calculations [10] in Fig. 
4, where 20 microstructures with same combination of R and f are considered in the analysis. 
As show in Fig. 5, when f  is kept as a constant, the slope of fracture probability curve 
becomes steeper as R increases, leading to less fracture toughness scatter. The opposite trend 
is observed when R is fixed while f  is increased from 10% to 25%. This indicates that 
microstructures with fine particles and high volume fractions will have higher-order 
uncertainties due to the large fracture toughness variation. However, it should be noted that 
this type of combination also yield higher level fracture toughness values at the same time. 
This trend has been reported in a few research studies [17-19]. From the microstructure design 
perspective, it is not surprising that shifting up the fracture toughness values will lead to 
larger scatter band. First of all, composites materials are toughened through crack-particle 
interactions. Generally speaking, more interactions during the crack propagation process will 
lead to higher fracture resistance. If a crack does not encounter any reinforcement, the choice 
of crack path is very limited. The fracture toughness of the composite material is very close to 
the fracture toughness of matrix material which is considered as the lower bound fracture 
toughness. Besides, more crack-particle interactions can be created by increasing the volume 
fraction of particles. As discussed previously, the effective toughening mechanism during 
crack-particle interaction is crack deflection induced interface debonding. This requires fine 
particles in addition to high volume fraction. Crack deflection, which contributes to enhancing 
the level of fracture toughness, also provides the crack with more opportunities in choosing 
the path. The scatter is intensified when more crack-particle interactions are included. This 
explains why microstructure configurations which lead to higher level of fracture toughness 
also have larger fracture toughness scatter. 
 

It is also noted that the fracture toughness values predicted from Eqn. (3) and (7) is larger than 
the values predicted from CFEM results. In Fig. 5, the range of ICK  values predicted from the 

analytical model is approximately from 2.7 MPa m  to 8.4 MPa m . In contrast, the range 
of ICK  values predicted from CFEM calculations only spans from 2.7 MPa m  to 

4.7 MPa m  as shown in Fig. 4. With lower bound ICK  predictions being consistent, the 
analytical model predicts a much higher upper bound value. This is because the two-point 
correlation functions employed in the analytical model quantify the possibility of crack-
particle interactions in the entire microstructure region. However, the crack propagation in 
CFEM simulations is primarily localized in a small region near the pre-crack plane. The crack 
does not have the opportunity to interact with particles which are far away from the pre-crack 
plane. To quantitatively understand how localization of crack propagation influences the level 



of fracture toughness and the magnitude of scatter, another set of calculations are carried out 
by considering the interactions of particles within the local region of each microstructure 
instantiation employed in CFEM calculations .  

 

 
 

Fig. 5 Fracture probability distribution predicted from analytical model for microstructures 
with randomly distributed non-overlapping circular particles.  

 
Fracture toughness scatter is quantified by the shape parameter m . It can be inferred from 
Eqn. (8) that if the magnitude of the scatter is large, then m  is small and vice versa. Specially, 
m   is expected if there is no scatter. Theoretically, it can be achieved only when 0f   
or 1f   as the microstructure is purely matrix phase or reinforcement phase.  
 

Fig. 6 compares m  values predicted from the analytical model and CFEM framework. The 
solid lines and dashed lines represent analytical solutions with the entire microstructure and 
local microstructure region, respectively. CFEM results are illustrated by dots. 
Microstructures considered here have volume fraction f  ranging from 0 to 30%. Three 
particle sizes with 20 μmR  , 30 μmR   and 40 μmR   are employed and represented by 
blue, red and black color, respectively. As demonstrated in Fig. 6, a much higher level of m  
values are predicted for analytical solutions considering the local microstructure region. This 
means there is smaller fracture toughness scatter when the crack only propagates in the 
localized microstructure region. It makes sense that a lower level of m values are predicted 
when the entire microstructure region is considered since the interactions of crack with all the 
particles in the microstructure region are included. From microstructure design prospective, 
m values predicted by considering the entire microstructure region are very conservative since 
the crack-particle interaction is usually localized when the reinforcements are well bonded 
with the matrix. Therefore, analysis with local and entire microstructure region can serve as 
the upper limit and lower limit of m as represented by dashed and solid lines, respectively. 
Despite discrepancies in m , both predictions share the same trends. First of all, the increase 



of volume fraction f   leads to decreased m . The larger scatter of fracture toughness is 
observed due to more intensified crack-particle interactions during crack propagation. The 
decrease of R  can have the same effect as small particles promote interface debonding and 
create more uncertainties in choosing the crack path. It is noted that the CFEM predictions of 
m  all fall between the upper and lower bound with the similar trends as observed from the 
analytical predictions. It is also observed that the CFEM predictions are closer to the upper 
bound m  as f  increases. When 25%f   , m  values predicted from CFEM calculations are 
very close to the upper bound prediction especially when particle size is small. It can be 
inferred that the crack-particle interactions in local microstructure region is representative of 
the entire microstructure region when reinforcements with small size and large volume 
fractions are considered. As shown in Fig. 6, the discrepancy between the lower bound curves 
and upper bound curves becomes smaller with increasing f  and decreasing R . Once f  
increases to 100% and R  decreases to 0, both the upper and lower bound curves will saturate 
to m   as the microstructure becomes pure reinforcement phase. This means m  will not 
continue to decrease as f  increases. After f  reaches a critical value, the trend reverses. 
Although the critical f  cannot be predicted because the analytical model developed here only 
considers non-overlapping circular reinforcements, the trends observed from the above 
analysis are still valid for most engineering cases. 
 

 
 

Fig. 6 Effect of microstructure attributes on m  predicted from CFEM model and analytical 
model considering the entire and local microstructure region, respectively.    



 
 
 

 
 

Fig. 7 Effect of proportions of interface debonding inH  and particle cracking pH  on m  under 
different values of particle size and volume fraction. 

 
 
Fig. 7 summarizes the scatter of inH  and pH  under different particle size and volume 
fraction, and compares them with the scatter of fracture toughness m . inH  , pH  and m  are 
all predicted from the analytical model considering the local microstructure region. The solid 
black line in each sub-figure connects the average value of inH  or pH  under each volume 
fraction.  It is noted that the scatter of fracture toughness primarily comes of the scatter of 

inH . The increase in volume fraction f  and decrease in particle size R  can lead to higher 
average inH  and higher inH  as well. Compared with inH , pH  is less sensitive to R  and f . 
The increase in volume fraction f  and particle size R  has limited effect on the average value 
of  pH  and its scattering.  

Conclusions 

 
In conclusion, the most effective way to improve the fracture toughness of two-phase 
composite material is to increase crack tortuosity by promoting interface debonding. This can 
be achieved by introducing refined second-phase reinforcements with adequate volume 
fraction. It should be noted that the decrease in reinforcement size and increase in volume 
fraction also enhance the sensitivity of the material system as larger fracture toughness scatter 
is observed at the same time. The analytical model developed here provide a way to estimate 
the upper and lower limit of fracture toughness by considering microstructure attributes and  
fracture mechanisms involved in the failure process. The prediction of Weibull parameter m  



as shown in Fig. 6 can be employed as a reference of fracture toughness scatter for material 
sensitive design of two-phase composite materials.  
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