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Abstract 

The vibration behavior of thin elastic structures is noticeably influenced by the surrounding 

water, which represents a heavy fluid. In this case, the feedback of the fluid pressure onto the 

structures cannot be neglected and a strong coupling scheme between the structural domain 

and the fluid domain is required. In this paper, a coupled finite element and boundary element 

(FE-BE) solver is developed for the modal analysis of three-dimensional submerged elastic 

structures. The structures are modeled by means of the finite element method (FEM). The 

compressibility of the surrounding fluid is taken into consideration, and thus the Helmholtz 

equation is used as the governing equation and solved by using the boundary element method 

(BEM). The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear 

one by using a contour integral method. A numerical example is finally given to demonstrate 

the effectiveness and applicability of the developed method. 

Keywords: Fluid-structure interaction, Modal analysis, Coupled FE-BE method,  Nonlinear 

eigenvalue problem, Contour integral method 

Introduction 

Finding resonances allows the designers to anticipate the structural vibration and to ensure 

that the resonance frequencies are distinct from those of the vibrating sources. In engineering 

applications, it is common to apply the FEM to perform the modal analysis of a structure in 

vacuo due to the high flexibility and applicability of the FEM to large-scale models. However, 

when the structure is submerged in a heavy fluid, e.g., water, a strong interaction between the 

structural domain and the fluid domain occurs and noticeably alters the resonance frequencies, 

especially for thin elastic structures [1]. Numerical simulations of the vibro-acoustic behavior 

of submerged structures usually require dealing with the fluid-structure interaction (FSI) since 

the feedback of the fluid pressure onto the structures can not be neglected for a heavy fluid. 

Thus, a scheme which takes the effect of the fluid on the structure into account should be used. 

Although some techniques such as the perfectly matched layer (PML) can be used to simulate 

the infinite fluid domains, the FEM still has some troubles in solving exterior problems, for 

instance the questions related to the position, size and parameter settings of the PML, and also 

the consequently big discretized model. By contrast, the BEM is much more favorable for the 

numerical solution of exterior problems since only the boundary of the structural domain has 

to be discretized and the Sommerfeld radiation condition can be satisfied automatically by the 

choice of the fundamental solution [2]. As a result, the coupled FE-BE methods are usually 

preferred for the numerical solution of the FSI problems [3][4]. 

 

In the numerical modal analysis of submerged structures, the fluid is sometimes assumed to 

be incompressible and hence modeled by the Laplace equation for simplicity [5]. The effect of 

the fluid on the structure can be regarded as adding mass and then a generalized eigenvalue 



problem (GEVP) which is easy to solve can be obtained. However, when the compressibility 

of the fluid is taken into account and thus the fluid is modeled by the Helmholtz equation, the 

resulting eigenvalue problem is nonlinear since the frequency parameter appears nonlinearly 

in the boundary integral formulations of the Helmholtz equation. To solve such a NEVP, one 

scheme is to set up a GEVP by treating the term involving wave number in the Helmholtz 

equation as a non-homogeneous term. The fundamental solution of the Laplace equation is 

applied in the boundary integral formulations instead of that of the Helmholtz equation. The 

volume integrals caused by the non-homogeneous term can be transformed into boundary 

integrals by means of various methods, such as the dual reciprocity method [6] and the radial 

integration method [7]. Some other schemes which are presented for instance in [8][9] are 

based on the polynomial approximations of the coupled FE-BE coefficient matrix. 

 

In addition to the approaches mentioned above, a group of methods based on contour integrals 

[10]-[12] have been recently developed. Through the use of these methods, a NEVP can be 

easily converted into a GEVP whose dimension is much smaller than the original NEVP. The 

eigenvalues lying inside a domain enclosed by a prescribed contour path can then be extracted 

by solving the small GEVP. The conversion is achieved directly by solving a series of linear 

systems of equations along the contour path. Since these systems of equations are independent 

and in the similar form as the ones arising in the response analysis, the big advantages of the 

contour integral methods are that they are very easy to be implemented and more suitable to 

be parallelized effectively. So far some of these methods have already been applied to solve 

some NEVPs in engineering applications. For instance, the method proposed by Asakura et al. 

[10] has been applied to solve the acoustic eigenvalue problems in [13] and to conduct the 

band structure analysis of phononic crystals in [14]. Kimeswenger et al. [15] analyzed the 

approximation of an FSI eigenvalue problem and used Beyn's method [11] for the numerical 

solution of the discretized NEVP. In this paper, a coupled FE-BE solver is developed for the 

modal analysis of three-dimensional submerged structures. The resulting NEVP is converted 

into a small linear one by using the contour integral method proposed by Asakura et al. [10]. 

Numerical implementation of the method in the FSI eigenvalue problems is given and some 

discussions are also given to further improve the efficiency and effectiveness of the method. 

A numerical example is employed finally to demonstrate the applicability and effectiveness of 

the developed FSI modal analysis method. 

Formulation 

In this section, a NEVP is first formulated for the modal analysis of an elastic structure which 

is submerged in an infinite fluid domain. The NEVP is then converted into a small GEVP by 

using a contour integral method proposed in [10]. Numerical implementation of the method in 

the modal analysis of submerged elastic structures is given in detail and some discussions are 

also given to improve the efficiency and avoid missing the resonance frequencies of interest. 

FSI eigenvalue problems 

Modal analysis of an elastic structure which is submerged in an infinite compressible inviscid 

fluid domain is discussed in this paper. If the structure is subjected to a time-harmonic load, 

we can derive an FEM system of equations in the frequency domain as 

     2

s f  K u f fM      (1) 

where K and M are the global stiffness and mass matrices of the structure,   is the circular 

frequency, u is the nodal displacement vector, fs and ff are the vectors with respect to the 

nodal values for the structural excitation force and fluid interaction force, respectively. 



Because the compressibility of the fluid is taken into account in this paper, the propagation of 

time-harmonic acoustic waves in the fluid is described by the Helmholtz equation, which can 

be recast into a Kirchhoff-Helmholtz boundary integral equation (HBIE). It is widely known 

that the BEM based on the HBIE suffers from the fictitious eigenfrequency problem or the 

non-unique solution difficulty at the eigenfrequencies of the associated interior problems [16]. 

To overcome this difficulty, the Burton-Miller formulation [16] which is a linear combination 

of the HBIE and its normal derivative is adopted in this paper. Discretizing the HBIE or the 

Burton-Miller formulation and collecting the equations for all collocation points allow us to 

obtain a BEM system of equations as 

    
ii H Gp v p      (2) 

where p and v are the vectors with respect to the nodal values for the sound pressure and the 

normal velocity on the fluid-structure interface, H and G are the BEM coefficient matrices 

corresponding to p and v, i is the imaginary unit,   is the mass density of the fluid, and pi is 

the vector for the incident wave on the fluid boundary. 

 

In the coupled FE-BE method for the numerical analysis of the FSI problems, Eqs. (1) and (2) 

have to be linked up via the coupling conditions across the fluid-structure interface to obtain a 

fully coupled system of equations. Firstly, considering the continuity of the normal surface 

velocity on the interface, we obtain 

    1

fsi  v L T u      (3) 

where d
I

T

f f


 L N N  and d
I

T

f ss f


 T N nN , fN  and 
sN  are the BEM and FEM interpolation 

functions for the fluid and structural domains, respectively. T

fN  is the transpose of fN  and n  

is the unit normal vector on the fluid-structure interface 
I . In addition, the interaction force 

vector ff  represents the effect of the sound pressure on the structure and can be calculated by 

    f sff T p      (4) 

where d
I

s

T T

sf fs f


  T T N nN . 

 

An appropriate scheme to generate a fully coupled system of equations is to substitute the 

FEM system into the BEM system with the use of Eqs. (3) and (4) to generate 

    s i Ap Bf p      (5) 

where sf A H BT , B GW , 2 1 1
fs s  W L T A  and 2

s i   A K C M . 

 

The coupled system, i.e., Eq. (5) is fundamental in the numerical analysis of the FSI problems. 

However, as its coefficient matrix A  involves the frequency parameter implicitly, we obtain a 

NEVP in the FSI modal analysis for finding the eigenpairs ( , )
p
jj   that satisfy 

    )( 0p
j j  A      (6) 

where j  is the eigenvalue and 
p

j  represents the corresponding eigenvector with respect to 

the sound pressure on the fluid-structure interface. 

 

Eq. (6) has non-trivial solutions when the determinant of )( jA  is equal to zero. In general, it 

is not an easy task to solve such a problem directly, therefore, a contour integral method is 

employed next to convert such a NEVP into a small GEVP which is much easier to deal with. 



Contour integral method 

The contour integral method proposed by Asakura et al. [10] and usually referred to as the 

block Sakurai-Sugiura (bSS) method is introduced here. It is a projection method which can 

extract eigenvalues while preserving their multiplicities in a domain enclosed by a positively 

oriented Jordan curve. In this method, the projection is performed through two Hankel 

matrices 
1 2, KL KLH H  , which are formed by 

    
1 2 , 1j l

K

j l  
   H M  and 

12 , 1j l

K

j l  
   H M      (7) 

where the moments L L

l

M   are defined by 
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   M V A V       (8) 

and C is a positively oriented closed Jordan curve in the complex plane, V is a nonzero matrix 

chosen as random, V
H
 is the conjugate transpose of V, A is the coefficient matrix of Eq. (5), K 

and L are positive integers. 

 

It has been proved mathematically in [10] that the eigenvalues of the linear matrix pencil (H2, 

H1) are identical to those of the original NEVP lying inside C. After obtaining the eigenpairs 

( , )j j   of the matrix pencil, we can calculate the eigenvectors for the original problem by 

    p

j j  S      (9) 

where 
0 1 1, , ,[ ]K S SS S  , and 

    1 d 0,1, ,) , 1
1

(
2

,l
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   S A V       (10) 

It is found that the original NEVP has been converted into a GEVP whose dimension is much 

smaller than the original problem through the bSS method. The conversion can be achieved 

readily and directly by solving a series of linear system of equations, i.e., AX=V, which are 

independent and similar to the one used in the normal FSI analysis. Thus, the method is very 

easy to be implemented and suitable to be parallelized effectively. Next, the implementation 

of the bSS method in the numerical modal analysis of submerged structures is presented. 

Numerical modal analysis of submerged structures 

It is found from Eqs. (8) and (10) that two sets of contour integrals in the form of 

    
1

( )
2

dl
C

lz f zz
i

 I       (11) 

have to be evaluated in numerical computation. In Eq. (11), f(z) = V
H
A

-1
(z)V for Ml and f(z) =  

A
-1

(z)V for Sl. When the eigenvalues of interest are located in an interval of m xmin a[ , ]   and the 

contour path C is chosen from a family of ellipse of  cos sin , [0,2 ]z i         , Eq. 

(11) can be shifted, scaled and approximated by the N-point trapezoidal rule to produce 

       
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N

l

l

j

j

j

j ji f z
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
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where (cos )sinj j jiz       , (2 / )( 1 2)j N j   , max min( ) 2   , max min( ) 2    and 

  is a scaling factor. When   is set to 1, the contour path C turns into a circle. 
 



As the results of using Eq. (12), 
1 2

ˆ ˆ,H H  which are the shifted and scaled approximations of 

the two Hankel matrices H1, H2 can be obtained. In order to calculate the eigenpairs of the 

matrix pencil 
2 1

ˆ( , ˆ )HH , a singular value decomposition (SVD) is performed on 
1Ĥ  to obtain 

    
1

ˆ HH PΣQ      (13) 

where P and Q are unitary matrices, 
1 2diag( , , ), KL  Σ   and 

1 2, , , KL    are nonnegative 

real numbers in descending order. 

 

The original NEVP then can be converted into an ordinary linear eigenvalue problem to find 

the eigenpairs ,ˆ )ˆ( j j   of the following matrix: 

    
2

1

3
ˆ ˆH H P H QΣ      (14) 

After obtaining the eigenpairs of 3Ĥ , the original eigenvalue j  can be recovered by 

    ˆ
j j         (15) 

and the corresponding eigenvector p

j  with respect to the sound pressure on the fluid-structure 

interface can be calculate by 

    1 ˆp

j j  SQΣ      (16) 

The eigenvector u
j  with respect to the structural nodal displacements can then be obtained by 

solving 

    u p

s j sf j A T      (17) 

In order to omit small singular values which bring irrelevant results, a threshold   is used in 

the original bSS method [10] to truncate the SVD of 
1Ĥ . However, this brings a difficulty to 

specify a proper value for  . A large   may cause a possibility of missing some eigenvalues 

of interest, while a small   may not filter out irrelevant results totally. Moreover, it is pointed 

out by Sakurai et al. [17] that it is not necessary to take a large N to reduce the quadrature 

error in calculating contour integrals. However, it is found from our numerical experiments 

that irrelevant results cannot be filtered out by using a small  , like 1210   used in [10], 

even with a large N. The reason is that not only the quadrature error of calculating contour 

integrals exists in engineering applications but also some other errors, e.g., the errors from the 

modeling, mesh discretization and solution of systems of equations. To filter out all irrelevant 

results, a large N (i.e., more integration points) is usually required to achieve a better 

performance of the filter, but unfortunately this makes the computational cost increase quickly. 
 

In this paper, in order to truncate the SVD effectively and efficiently, the gaps between the 

singular values of 1Ĥ , i.e., 1 2, , , KL    are tested and the SVD of 1Ĥ  is truncated first at the 

biggest gap. 3Ĥ  in Eq. (14) is then truncated according to the truncation of 1Ĥ , and as a result 

a set of eigenvalues denoted by gap  can be separated out by finding the eigenvalues of the 

truncated matrix of 3Ĥ . At the same time, the SVD of 1Ĥ  is also truncated by a threshold   

and another set of eigenvalues denoted by thr  can be obtained. The components in the two 

sets, i.e., gap  and thr , are then checked. If every number in gap  is inside the contour and 

every number in the difference set \ gapthr   (i.e., { | }gthr ap    ) is outside the contour, 

the numbers in gap  are taken as the final numerical solutions. Otherwise, a large N is required. 

Thus, it is found that the threshold   is now used only to check if the truncation at the biggest 

gap is reasonable or not, and to make sure that no eigenvalue of interest is missed. Moreover, 

the present truncation scheme can be treated as a stopping criterion, and thus a small N can be 



given initially in the bSS method and increased gradually until the final solutions are obtained. 

To further improve the efficiency, the integration points of the trapezoidal rule are evenly 

distributed with respect to the angle   and doubled for the increase of N. As a result only the 

systems of equations at the new integration points need to be solved and the rest have already 

been solved at the previous steps. 

Numerical example 

An elastic spherical shell structure is employed in this section as a numerical example to show 

the effectiveness and applicability of the present numerical tool for the modal analysis of 

three-dimensional submerged structures. The shell structure is made of steel, and the material 

properties for the structure and the surrounding water are listed in Table 1. The structure has 

the outer radius of a = 5.0m and the thickness of h = 0.05m. 

 

Table  1. Material properties for the structures and water 

Density (structures) 
s  7800 kg/m

3
 

Young’s modulus (structures) E  210 GPa 

Poisson’s ratio (structures) v  0.3 - 

Density (water)   1000 kg/m
3
 

Speed of sound (water) 
fC  1482 m/s 

 

In the numerical analysis, the structure is modeled into a finite element mesh with 600 shell 

elements, which corresponds to 6492 DOFs. The fluid-structure interface is discretized into a 

boundary element mesh with 600 discontinuous quadratic elements, which corresponds to 

4800 DOFs. Resonance frequencies in an interval of [34.0, 82.0]Hz are calculated, so that an 

elliptical path with (58.0,0)  , 24.0   and 0.05   can be employed as the contour path. 

The parameters used in the modified block SS method are set as K = 4, L = 15 and 1210  . 

The computation terminates automatically at N = 16, and the computed eigenfrequencies are 

listed in the left part of Table 2. It is observed that the eigenfrequencies whose multiplicities 

are equal to or larger than one can both be extracted by using the present numerical tool. In 

addition, it is observed that the imaginary parts of these numerical eigenfrequencies are all 

negative, which implies that they are physically related to the radiation damping. This 

example is also analyzed numerically in [9], where a polynomial approximation method is 

used to solve the underlying NEVP. The calculated eigenfrequencies therein are 55.84-1.18i, 

70.48-0.31i and 80.59-0.042i, and the multiplicities for them are 5, 7 and 9, respectively. It 

can be found that the numerical eigenfrequencies obtained by the present numerical tool are 

very close to the numerical results presented in [9]. 

 

The fluid-loaded modes (sometimes also called the wet modes) of the spherical shell structure, 

which are obtained by the developed FSI eigensolver are illustrated in Fig. 1. In Table 2, the 

computed eigenfrequencies of the in vacuo structure are also given, where the finite element 

based eigenvalue problem is solved by the bSS method (indicated by SS-FEM) and ANSYS, 

respectively. Another elliptical path with (137.0,0)  , 17.0   and 0.05   is used in the SS-

FEM, and the parameters utilized in the bSS method are set the same as the ones used above. 

The computation terminates automatically at N=32. The computed eigenfrequencies are listed 

in the right part of Table 2, and their mode shapes are similar to the fluid-loaded modes of the 

eigenfrequencies listed in the left part of Table 2. It can be observed that the real parts of the 

numerical results obtained by the SS-FEM are equal to the numerical results obtained by 

ANSYS, and the imaginary parts are very small and can be neglected directly. Furthermore, 



as can be seen, the fluid has a significant influence on the eigenfrequencies of the submerged 

elastic structure. All frequencies are lowered due to the fluid, that is because the surrounding 

fluid acts like an adding mass to the submerged structure. Accordingly, such variations of the 

eigenfrequencies necessitate the solution of the coupled eigenvalue problem. 

 

Table 2. Eigenfrequencies of the spherical shell structure 

i 
Frequencies (Hz, with fluid) Frequencies (Hz, no fluid) 

SS-FEM-BEM SS-FEM ANSYS 

1 55.84 – 1.18i 120.91 – 3.07×10
-14

i 120.91 

2 55.84 – 1.18i 120.91 – 2.36×10
-14

i 120.91 

3 55.84 – 1.18i 120.91 – 4.16×10
-14

i 120.91 

4 55.84 – 1.18i 120.91 + 2.74×10
-14

i 120.91 

5 55.84 – 1.18i 120.91 + 1.30×10
-13

i 120.91 

6 70.48 – 0.31i 143.22 – 2.41×10
-13

i 143.22 

7 70.48 – 0.31i 143.22 + 4.57×10
-13

i 143.22 

8 70.48 – 0.31i 143.22 + 1.91×10
-13

i 143.22 

9 70.48 – 0.31i 143.22 + 9.27×10
-14

i 143.22 

10 70.48 – 0.31i 143.22 + 2.32×10
-13

i 143.22 

11 70.48 – 0.31i 143.22 + 9.42×10
-13

i 143.22 

12 70.48 – 0.31i 143.22 + 5.34×10
-13

i 143.22 

13 80.59 – 0.042i 152.10 – 6.35×10
-13

i 152.10 

14 80.59 – 0.042i 152.11 + 1.26×10
-13

i 152.11 

15 80.59 – 0.042i 152.11 + 3.58×10
-14

i 152.11 

16 80.59 – 0.042i 152.11 – 6.37×10
-14

i 152.11 

17 80.60 – 0.042i 152.12 + 1.76×10
-13

i 152.12 

18 80.60 – 0.042i 152.12 + 1.69×10
-13

i 152.12 

19 80.60 – 0.042i 152.12 – 6.41×10
-14

i 152.12 

20 80.61 – 0.042i 152.13 – 2.45×10
-14

i 152.13 

21 80.61 – 0.042i 152.13 – 5.88×10
-15

i 152.13 

 

 

Figure 1. Mode shapes of the submerged spherical shell structure 

Conclusions 

In this paper, the numerical modal analysis of three-dimensional submerged elastic structures 

is carried out by using a coupled FE-BE solver. The submerged structure is modeled by the 

FEM. The compressibility of the surrounding infinite fluid domain is taken into account and 

hence the Helmholtz equation serves as the governing equation and is solved by the BEM. A 

contour integral method proposed by Asakura et al. [10] is employed to convert the resulting 

NEVP into a small GEVP. Numerical implementation of the method in the FSI eigenvalue 



problems is given in detail. In order to improve the efficiency of the method and also avoid 

missing the eigenvalues of interest, a novel scheme for the truncation of the small singular 

values is presented. This scheme is then used as a stopping criterion, and thus a small number 

of integration points for the numerical quadrature of contour integrals can be given initially 

and then increased gradually until the final solutions are obtained. The effectiveness and 

applicability of the present numerical tool for the modal analysis of submerged structures are 

shown by a numerical example of an elastic spherical shell structure. All eigenfrequencies of 

the spherical shell structure are lowered due to the surrounding fluid, and the variations of the 

eigenfrequencies necessitate the solution of the coupled eigenvalue problem. 
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