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Abstract 

Sloshing in a liquid tank of huge size could potentially induce the structural vibration and 
fatigue damage. Though many numerous researches of sloshing have been conducted to 
characterize the impact phenomenon, the problem still remains to be addressed since the 
neglect of hydro-elastic behaviors of structure which will presence in the real phenomenon. In 
this paper a hybrid method has been developed to study the three-dimensional (3D) liquid 
sloshing with the consideration of structural elasticity. The improved moving particle semi-
implicit (MPS) method is employed to simulate the evolution of 3D flow. The finite element 
method (FEM) is employed to calculate the vibration of the flexible tank wall. The MPS and 
FEM methods are coupled with a partition strategy within the fully Lagrangian system. Then, 
the sloshing in a 3D elastic tank is numerically investigated and results are compared with 
those corresponding to a 3D rigid tank. The effects of the structural elasticity on the sloshing 
behaviors are discussed. 
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Introduction 

Fluid structure interaction (FSI) is omnipresent in nature and in many engineering fields. For 
instance, the sloshing phenomenon occurred in a partially loaded oil tanker or liquid natural 
gas ship is a typical FSI problem involving multi-physic, yet interrelated liquid, gas and solid 
domains interact with each other as a unit [1]. For this intricate problem, it’s hard to achieve 
analytical solution whereas laboratory experiment is limited in scope [2]. Considering the 
fundamental physics involved in the problem can be obtained by numerical simulations, 
active numerical researches have been carried out in the field of FSI over the past two decades 
and multiple numerical models were developed [3]. 
 
Conventionally, the FSI problems are solved with the fluid field modeled in an arbitrary-
Lagrangian-Eulerian (ALE) formulation while the structure field modeled in a Lagrangian 
formulation. For this approach, grids are necessary to tessellate the solution domain. As the 
structure undergoes large deformations, the fluid mesh may get highly distorted, especially for 
a 3D FSI simulation. Although the re-meshing or mesh-updating techniques can be employed 
to improve the mesh quality as the solution is advanced, extra charge of computation time is 
unavoidable [4]. Furthermore, the distorted mesh is detrimental for the accuracy of free surface 
which plays a crucial role in the sloshing phenomenon.  
In the recent decade, the fully Lagrangian approaches for both fluid and structure fields are 
utilized to model the FSI problems since they are flexible in dealing with structural 
deformation, tracking of free surface, and without having to cope with the nonlinear 



convective term which appears in the momentum equation in the Eulerian framework. Till to 
now, several representative Lagrangian methods, such as the smoothed particle 
hydrodynamics (SPH) method [5], the particle finite element method (PFEM) [6], the material 
point method (MPM) [7], etc. have been proposed for fluid domain analysis while the FEM 
method is employed for the structure domain analysis. According to the prior results, 
disordered pressure fields of fluid are observed, although these methods have shown the great 
potential for the practical FSI problems involving with motion of fluid or structure particles, 
surface waves and water splashing. Comparatively, another representative Lagrangian method, 
the moving particle semi-implicit (MPS) method which is originally proposed by Koshizuka 
and Oka for incompressible flow [8], is able to achieve smooth fluid pressure field since lots of 
improvements were proposed to suppress the numerical unphysical pressure oscillation [9]-[11]. 
In the nearly few years, the MPS method has been introduced into the FSI problems [12]-[16], 
and results shown that this method is stable and reasonable accurate for simulating nonlinear 
FSI problems. Hence, the MPS method is employed for the computation of fluid domain of 
the FSI problem in this paper.  
 
Indeed, all the aforementioned Lagrangian methods for the FSI problems are implemented 
within two-dimensional space [17]-[22]. To address the practical FSI problems, it’s essential to 
extend these methods into 3D space. However, it’s a time consuming task of simulation while 
the structural domain is dispersed by grids with the nodes coincide with the fluid particles on 
the interface. Normally a much larger mesh size compared to the size of fluid particle is 
accurate enough to simulate the structure field. In the present work, the MPS and FEM 
coupled method is developed for 3D FSI problems, and an interpolation scheme is proposed 
for the communication on the isomerous interface where the size of structural boundary grids 
differs from the size of fluid particles. Then, the MPS-FEM coupled method is applied to the 
practical problem of violent sloshing flow interacting with elastic tank walls, and influence of 
structural elasticity on the sloshing phenomenon is comparatively investigated. 
 

Numerical methods 

In the present study, the FSI problem is numerically studied by a partitioned coupled 
approach, of which the flow equations and the structural equations are solved separately. Here, 
the fluid domain is calculated by our in-house particle solver MLParticle-SJTU [23]-[26] based 
on improved MPS method and the structural domain is calculated by the FEM method.  
 

Fluid solver based on MPS method 

Governing equations for incompressible viscous fluid in Lagrangian system are  

 0∇⋅V =    (1) 

 21D P
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where V, t, ρ, P, ν and g represent the velocity vector, time, water density, pressure, kinematic 
viscosity and the gravity acceleration vector, respectively.  
 
In particle method, governing equations should be expressed by the particle interaction 
models based on the kernel function. Here, the kernel function presented by Zhang et al.[23] is 
employed. 
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where r is distance between particles and re is the effect radius.  
 
The particle interaction models, including the differential operators of gradient, divergence 
and Laplacian, are defined as 
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where ϕ is an arbitrary scalar function, Ф is an arbitrary vector, dim is the number of space 
dimensions, 0n is the initial particle number density for incompressible flow, λ is a parameter 
defined as 
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which is introduced to keep the variance increase equal to that of the analytical solution [8]. 
 
The incompressible condition of MPS method is represented by keeping the particle number 
density constant. In each time step, there are two stages: first, temporal velocity of particles is 
calculated based on viscous and gravitational forces, and particles are moved according to the 
temporal velocity; second, pressure is implicitly calculated by solving a Poisson equation, and 
the velocity and position of particles are updated according to the obtained pressure. The 
Pressure Poisson Equation (PPE) in present MPS solver is defined as 
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where γ is a blending parameter with a value between 0 and 1. The range of 0.01 0.05≤ ≤γ is 
better according to numerical experiments conducted by Lee et al.[27] In this paper, 0.01=γ  is 
adopted for all simulations.  
 
For the MPS method, pressure of the fluid domain is closely affected by the accuracy of free 
surface detection. In present solver, we employ a free surface detection method by Zhang et 
al.[23] and defined as 
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where the vector function F represents the asymmetry of arrangements of neighbor particles. 
Particle satisfying 

 0| |   0.9 | |i< > >F F  (10) 



is considered as free surface particle, where 0F is the initial value of F  for surface particle.  
 

Structure solver based on FEM method 

In present study, the FEM method is employed to solve the deformation of structure which is 
governed by the equations expressed as  

 t+ + =M C K ( ) y y y F   (11) 

 1 2 M KC α α= +  (12) 

where M, C, K are the mass matrix, the Rayleigh damping matrix, the stiffness matrix of the 
structure, respectively. F is the external force vector acting on structure, and varies with 
computational time. y is the displacement vector of structure. 1α  and 2α  are coefficients 
which are related with natural frequencies and damping ratios of structure.  
 
To solve the structural dynamic equation, another two group functions should be 
supplemented to set up a closed-form equation system. Here, Taylor’s expansions of velocity 
and displacement developed by Newmark [28] are employed:  
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where β and γ are important parameters of the Newmark method, and selected as β=0.25, 
γ=0.5 for all simulations in present paper. The nodal displacements at t = t+∆t can be solved 
by the following formula [29]: 
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where K  and F  are so-called effective stiffness matrix and effective force vector, 
respectively. Finally, the accelerations and velocities corresponding to the next time step are 
updated as follows. 

 0 2 3( )y y y y yt t t t t t ta a a+∆ +∆= − − −    (16) 

 6 7y y y yt t t t t ta a+∆ +∆= + +     (17) 

 

Data interpolation on the interface between fluid and structure domain 

For the simulation of 3D FSI problems based on aforementioned MPS-FEM coupled method, 
the space of fluid domain will be dispersed by particles while the space of structural domain 



will be dispersed by grids. In general, the fine particles should be arranged within the fluid 
domain to keep a satisfactory precision for the fluid analysis. By contrast, the much coarser 
grids could be accurate enough for the structure analysis, which indicates that the fluid 
particles are not coincided with the structural nodes on the interface between the fluid and 
structure domain. Hence, the isomerous interface between the two domains may result in the 
challenge of data exchange in the process of FSI simulation. In the present study, special data 
interpolation technique is implied to apply the external force carried by the fluid particles onto 
the structural nodes and update the positions of boundary particles corresponding to the 
displacements of structural nodes. 
 
For the transformation of force from the fluid domain to the structural boundary, the 
schematic diagram of the technique is shown in Figure 1 and the procedure of interpolation 
can be summarized as below. 
(1) The mapping relationship between the boundary particle and the structural element will be 

established while the particle is arranged within the element at the initial time instant.  
(2) The external force Qj acting on the structural boundary is calculated by the formula 

 2
0 ( 1, 2,3, 4; 1,2 )j jQ P l i j npe= ⋅ = = 3  (18) 

where Pj is the pressure of the boundary particle obtained from the fluid domain, l0 is the 
initial distance between neighbor particles, npe is the number of particles on the interface. 
(3) The force Qj carried by the boundary particle j is divided into four parts and assigned onto 

the four nodes of the element s by the formula (19) with the help of the interpolation 
vector N, which is consisted of the shape functions Nk, Nxk, Nyk. 
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where e
sF  is the force vector regarding the element s, a and b are the half values of the width 

and height of the element, respectively.  
(4) Finally, the equivalent nodal force FI corresponding to the node I is obtained by the 

summation of force components regarding to the four neighbor elements. 

 ,3 ,4 ,1 ,2I r s m n= + + +F F F F F  (23) 

where ,4sF  is the force component contributed by the element s. Schematic program of the 
neighbor elements adjoining the node I and the concept of nodes numbering within element 
are shown as Figure 2. 
 



  
Figure 1. Schematic program of the force 

interpolation within element 

Figure 2. Schematic program of the neighbor 

elements adjoining the node I  

 
Besides, the fluid boundary which is consisted of particles will deforms corresponding to the 
deformation of structural boundary. The deflection values of boundary particles w can be 
obtained by the interpolation based on the shape functions N and the nodal displacements δ. 

 w = δN  (24) 
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where iw  is the linear displacement of node i, xiθ  and yiθ  are the angular displacements around 
the axis x and y, respectively. 
 

Numerical Simulations 

In the ship and ocean engineering, the sloshing phenomenon in a partially filled liquid tank is 
of great importance in assessing the strength of structure and has been intensively studied in 
the past a few decades. However, most contributions are focused on the mechanism of the 
nonlinear phenomenon regarding the rigid tank, and the elasticity of tank walls, which plays 
an important role in the sloshing phenomenon, have not been taken into account.  
 
In this study, the aforementioned MPS-FEM coupled method is employed to simulate the 
interaction between sloshing flow and three dimensional elastic tank. The influence of 
structural elasticity on the sloshing phenomenon will be investigated by comparing against the 
phenomenon in a rigid tank. 
 

Numerical setup 

Figure 3 shows the schematic diagram of the 3D computational model. The tank is free to roll 
around the axis O-O’ which is the symmetry axis of the floor. The tank is forced to roll 
harmoniously with the governing equation of motion defined as 

 0( ) sin( )t tθ θ ω=  (10) 

where ( )tθ  is the rotation angle of the tank, the excitation amplitude 0θ  is set to 4 degrees, the 
angular frequency of rotation ω  is set to 3.857 rad/s. To investigate the climb of water on the 



lateral wall of tank, the wave probe is mounted at the point A (0.01, 0, 0). In addition, the 
vibration of left lateral wall will be measured at the point B (0, 0.05, 0), C (0, 0.08, 0), E (0, 
0.15, 0), F (0, 0.2, 0), and the impact pressure will be recorded at the point D (0, 0.095, 0). 
 
In the present simulations, the 3D computational model is dispersed by particles with an 
initial spacing size (l0) of 0.005 m for both rigid and elastic tanks. To calculate the structural 
responses of the elastic walls which would experience the sloshing impact loads, the lateral 
tank walls are dispersed by elements with the spacing size of 0.01 m. Detailed parameters for 
both fluid and structural analysis are presented in Table 1. Herein, the Rayleigh’s damping has 
been taken into account for the structural analysis by setting the factor of mass-proportional 
contribution α1 as 0.0128 while the factor of stiffness-proportional contribution α2 as 5.01e-7. 
 

            
(a) tank     (b) measuring points 

Figure 3. Schematic diagram of the rolling tank with elastic lateral walls (Unit: m) 

 
Table 1.  Simulation parameters of numerical cases  

Fluid parameters Values Structural parameters Values 
Fluid density (kg/m3) 1000  Structure density (kg/m3) 1800  
Kinematic viscosity (m2/s) 5×10-5 Young's modulus (GPa) 10 
Gravitational acceleration (s/m2) 9.81 Poisson's ratio 0.3 
Particle spacing (m) 0.005 Element size (m) 0.01 
Number of fluid particles 74106 Damping coefficients α1 0.025 
Total number of particles 229816 Damping coefficients α2 0.0005 
Time step size (s) 1×10-4 Time step size (s) 1×10-4 

 

Impact loads on lateral walls 

The elasticity of tank walls can give rise to the difference of the impact loads acting on the 
lateral walls between the elastic and rigid tanks. As shown in Figure 4, the pressure time 
histories corresponding to rigid tank and elastic tank are measured at the point D. For the 
pressure in a rigid tank, the well-known character of the impact events, “church roof shape”, 
is observed. For the pressure in the tank with elastic lateral walls, the roof shape of the impact 
pressure signal shows much different features comparison against that regarding rigid tank. 
For instance, the peaks of the impact pressure are less than 2200 Pa, which are obviously 
smaller than those regarding the rigid tank. Furthermore, the pressure curve presents much 
larger amplitude oscillation, as shown in Figure 4 (b). According to the enlarged signal of 



pressure, four peaks and three valleys can be observed within one cycle of tank’s roll motion. 
The oscillation of pressure should be closely linked to the vibration of elastic wall. 
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Figure 4. Time histories of pressure at the measuring point D 

 

Climb of water front on lateral walls 

The elasticity of tank walls can also lead to the difference of free surface evolutions between 
the elastic and rigid tanks. Figure 5 shows the time histories of water levels at the measuring 
point A. According to the figure, the water level regarding the elastic tank is much lower than 
that of rigid tank. Herein, the water level corresponding to the rigid tank is marked as “level 
1” with the value 0.335 m, and the peaks of the curve is 0.5 m which indicates that the water 
particles hit the roof at a certain time instant since the splashing of water front. In contrast, the 
water level regarding the elastic tank is marked as “level 2” with the value 0.24 m, and the 
curve is featured with no pulsing signal which indicates that the splashing phenomenon of 
water front would not be observed in the region above the measuring point. 
 
Figure 6 shows the climbs of water fronts on the lateral walls in the front view. At the instant 
t1, the fluid particles distribute evenly over the rigid wall after the front of sloshing wave 
impacting onto the lateral wall, while those cluster at the area A with the shape “O” on the 
elastic wall. At the instant t2 = t1+0.1 s, the jet water climbs along the rigid wall and the 
distribution of fluid particles is homogeneous in the z direction. In contrast, the distribution of 
jet water along the elastic wall is uneven and presents in the “V” form. 
 
To obtain a more clear understanding of the difference of the free surface between the elastic 
and rigid tanks, the climbs of water fronts on the lateral walls are shown as Figure 7 in the 
side view. At the instant t1, the jet is generated after the impact event and turns to climb 
upward along the rigid wall. In comparison, the direction of the jet water inclines to inside of 
the tank since the deformation of the wall. At the instant t2, the water front regarding the rigid 
wall climbs up to roof of the tank without gap between the water surface and the lateral wall. 
However, the triangular pocket may exist at the upper corner of the elastic tank while the free 
surface touches the roof. 
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Figure 5. Evolution of water level at point A 

 

 
 

(a) Rigid tank (b) Elastic tank 

Figure 6. Climb of water front on the lateral wall (front view) 
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(a) Rigid tank (b) Elastic tank 

Figure 7. Climb of water front on the lateral wall (side view) 

 

Deformation of elastic walls 

Figure 8 shows the time histories of displacements of measuring points which mounted on left 
wall of the elastic tank. The similar character of the structural oscillations regarding different 
measuring points can be observed. According to the trends of the curves, the large amplitude 
vibrations present periodically and following with small amplitude vibrations. Remarkably, 
the oscillation amplitude of the measuring point C is much larger than that of other points 
away from it, which proofs that the elastic wall deforms with 3D feature, as exhibited in 
Figure 9.  
 
Figure 10 shows the relationship between structural vibration and impact pressure. Herein, the 
time instant when the pressure going up drastically is marked as timpact which denotes the start 
of the sloshing impact event, and the time instant when the pressure drops to zero is marked 
as tend which denotes the end of the impact event. The trend of pressure is in gear with that of 
structural vibration during the impact stage, which indicates that the impact pressure is 
sensitive to the vibration of tank wall. It can be inferred that the fluid particles may be drove 
away from the elastic wall and a gap would generate between the fluid and the lateral wall 
during the interaction of sloshing flow and the tank. As a result, the pressure which is 
measured by the contribution of neighbor fluid particles would rapidly reduce and result in the 
valleys of the pressure signal. In addition, the elastic wall vibrates with the amplitude 
decreasing gradually beyond the impact stage, which is induced by the joint effects of the 
structural damping and elastic restoring force. 
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Conclusions 

In the present study, the in-house solver MLParticle-SJTU based on the MPS-FEM coupled 
method is developed for 3D FSI problems. The mathematical equations for the MPS and FEM 
methods are introduced and an interface interpolation approach for data transformation 
between fluid and structure domains is proposed. With the help of the present FSI solver, the 
tentative investigation of 3D sloshing problem with the consideration of structural 
deformation can be successfully conducted. According to the numerical results, the influence 
of structural elasticity on the sloshing phenomenon can be observed. For instance, the 
elasticity of tank wall can give rise to the large amplitude oscillation of pressure which is in 
gear with that of structural vibration during the impact event. The lateral wall deforms in the 
form of cambered surface while the sloshing wave impacting onto it. The climb height of 
water front on the elastic wall is much lower than that regarding the rigid tank. The particle 
distribution of jet water presents the “V” form over the elastic wall while that is homogeneous 
over the rigid wall. Generally, the study present in this paper shows that the present MPS-
FEM coupled method is a promising numerical tool for simulating highly non-linear liquid 
sloshing in an elastic tank. 
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