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Abstract 

Analysis of the in-plane free vibration of the circular and annular functionally graded disks by 

a meshfree boundary-domain integral equation method are presented in this paper. The 

material properties of the disks are assumed to vary in the radial direction obeying an 

exponential law. Based on the two-dimensional linear elastic theory, the motion equations of 

the FG disks are derived by using the static fundamental solutions. Radial integration method 

as an efficient tool is adopted to treat the domain integrals which raised due to the material 

inhomogeneous and inertial effects. The natural frequencies and associate mode shapes are 

calculated for the FG disks with combinations of free and clamped boundary conditions. 

Parametric studies are also conducted to study the effects of the material gradients, radius 

ratios and boundary conditions on the frequency of the FG disks.  

Keywords: In-plane free vibration, circular and annular FG disks, meshfree boundary-domain 

integral equation method 

Introduction 

Circular and annular structures are structural components and commonly used in a wide 

variety of engineering applications including space structures, electronic components and 

rotating machinery. A lot of attentions have been focus on the free vibration characteristics of 

circular structures. For example, Weisensel [1] given the results of an extensive literature 

search and review of available source of numerical natural frequency information for 

stationary circular and annular elastic plates, where the information regarding the specific 

plate theory, boundary conditions, geometric properties and material properties used to 

determine the natural frequency information. Kirkhope and Wilson [2] applied the finite 

element method to the stress and vibration analysis of thin rotating discs. Han and Liew [3] 

presented a numerical analysis of the axisymmetric free vibration of moderately thick annular 

plates using the differential quadrature method (DQM). Chung et al. [4] derived the governing 

equation for free vibration of a spinning circular disk by using the variational formulation 

based upon the Kirchhoff plate theory and von Karman strain one, this was because they 

found that during the derivation that the governing equation was theoretically valid under the 

assumption that in-plane deflections were steady and axisymmetric, and that internal forces 

were linearized while the strains remain nonlinear.  

 

In-plane vibration characteristics are also very important for the circular annular structures. 

As the circular structures in most applications have direct in-plane forces or in-plane force 

components due to imperfections in the manufacturing, assembly or alignment of the 

supporting mounts. However, the studies reported on the in-plane vibrations of circular 

annular disks is relatively scarce. Ambati [5] carried out the in-plane vibrations of annular 

rings. Nigh and Olson [6] used a finite element formulation for the analysis of rotating disks 

in either a body-fixed or a space-fixed co-ordinate system. The in-plane stress distribution 

resulting from the in-plane body force due to rotation was determined first by a plane stress 
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finite element analysis. Farag and Pan [7] analyzed the modal characteristics of in-plane 

vibrations of a solid disk with clamped outer edge. Park [8] derived the frequency equation 

for the in-plane vibration of the clamped circular plate of uniform thickness by using 

Hamilton’s principle. The in-plane free vibration of an elastic and isotropic disk was studied 

by Bashmal et al. [9] on the basis of the two-dimensional linear plane stress theory of 

elasticity. rie et al. [10] examined the in-plane vibrations in circular and annular disks using 

transfer matrix formulation. Natural frequencies were obtained for several radius ratios of 

annular disks with combinations of free and clamped conditions at the inner and outer edges 

but mode shapes were not presented. 

 

With the increased application of the FG structures, vibration analyses of the FG circular and 

annular structures have attracted intensive research. Based on the first-order shear 

deformation theory, Francesco Tornabene [11] presented the dynamic behavior of moderately 

thick FG conical, cylindrical shells and annular plates, which material properties were graded 

through the thickness direction. Kermani et al. [12] analyzed the three-dimensional free 

vibrations of multi-directional graded circular and annular plates by the state space based 

differential quadrature method, which solved dimensionless equations of motion analytically 

along thickness direction and numerically along radial direction of the plate. Based on the 

three-dimensional theory of elasticity, the free and forced vibration analysis of FG circular 

plate with various boundary conditions was carried out by Nie and Zhong [13], the material 

properties were assumed to be graded in the thickness direction according to an exponential 

distribution. Three-dimensional free vibration analysis of FG annular plate were done by 

Dong [14] using the Chebyshev-Ritz method. The material properties also only varied in the 

thickness direction. The free vibration analysis of FG thick annular plates subjected to thermal 

environment was studied by Malekzadeh [15] based on the 3D elasticity theory, the material 

properties were assumed to be temperature dependent and graded in the thickness direction. 

Most of the mentioned reference were based on the three-dimensional analysis, and the 

material properties were only graded in the thickness direction. The other in-plane vibration 

of the FG circular and annular disks are very rare in the literature. Therefore, an accurate 

analysis of the in-plane vibration of the FG circular and annular disks with varied material 

properties in space coordinates must be considered.  

 

Thus, in-plane free vibration of the circular and annular functionally graded disks were 

presented in this paper. The material properties of the disks were assumed to grade in the 

radial direction. Based on the two-dimensional linear elastic theory, the motion equations of 

the FG disks could be derived by a meshfree boundary-domain integral equation method, and 

the radial integration method was applied to transform the domain integrals into boundary 

integrals. Normalized natural frequencies were obtained to compare with data available in the 

literature. Mode shapes were presented to illustrate the free vibration behavior of the disks. 

Geometrical and material properties of circular and annular FG disks 
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Figure 1 The geometry coordinates of the circular and annular FG disks 

The considered circular and annular FG disks are displayed in Fig. 1. R is the radius of the 

circular disk. For the annular FG disk, the outer and the inner radius are R and Ri respectively, 

and thickness is H. For commen multi-FG disks, the material properties are a function of 

polar coordinates (ř, θ) and vary continuously in one or more directions. In the present paper, 

only the material properties of the disks grade in radial directions was considered. The 

Young’s modulus E and the density ρ were assumed to vary continuous along the radial 

direction obeying an exponential law as shown in Eqs. (1) and (2) and the Poisson’s ratio ν 

was taking as a constant [16]. 
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where Es and ρs are the Young’s modulus and density at the starting face, Ee and ρe are the 

Young’s modulus and mass density at the ending face, β and γ represent the material gradient 

parameters for Young’s modulus and mass density respectively, ř stands for the radial 

coordinate, x0 and y0 are the center Cartesian coordinates of the considered circular and 

annular disks. 

Problem formulation 

Based on 2D elasticity theory, considering a FG circular disk, the governing differential 

equation of the steady-state elastodynamics is expressed as 

2

, ( ) ( ) 0ij j iu   x x .                                                      (4)    

The stress tensor σij and the displacement vector ui in Eq. (4) are functions of spatial 

coordinates x. By taking the elastostatic displacement fundamental solutions Uij(x, y) as the 

weight function, the weak-form of the equilibrium Eq. (4) can be obtained by 

2
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Substituting the generalized Hooke’s law 
0

, ,( )ij ijkl k l ijkl k lc u c u   x  and applying the Gauss’s 

divergence theorem, the weak form yields the following boundary-domain integral equations  
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In Eq. (6), the traction vector i ij jt n and nj is the components of the outward unit vector 

normal to the boundary Γ of the considered layer domain Ω. iu~  is the normalized 

displacement vector associated with the normalized shear modulus ~ , as defined by [17] 

( ) ( ) ( )i iu ux x x ，           ( ) ln[ ( )]x x  .                              (7a, b) 

where the shear modulus μ(x) varies with the coordinates, and is related to the Young’s 

modulus by ( ) ( ) / 2(1 )E v  x x .  

The ratio of the density and shear modulus in Eq. (6) is expressed 

as
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Uij(x, y) and Tij(x, y) are the elastostatic displacement fundamental solutions for homogeneous, 

isotropic and linear elastic solids with μ=1 [18]. 

, ,

1
[(3 4 ) ln( ) ]

8 (1 )
ij ij i jU v r r r

v





  


,                                                (8) 

0

, , , , , , ,

1
[(1 2 )( ) 2 ]

4 (1 )
ijl rsjl ir s il j ij l jl i i j lc U v r r r r r r

v r
  




      


,                     (9) 

, , , , ,

1
[(1 2 )( ) ((1 2 ) 2 ) ]

4 (1 )
ij ijl l i j j i ij i j l lT n v n r n r v r r r n

v r





       


,                   (10) 

, , , , , , , , ,

1
[(1 2 )( ) ((1 2 ) 2 ) ]

4 (1 )
ij ijl l i j j i ij i j l lV v r r v r r r

v r
    




       


,                   (11) 

where δij is the Kronecker delta. r=|x-y| is the distance from the field point x to the source 

point y. The elasticity tensor cijkl can be described in the form of 

0( ) ( )ijkl ijklc cx x ,   where   
0 2

1 2
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where 
0

ijklc  is the elasticity tensor for the corresponding “fictitious” homogeneous material 

with μ=1. 

 

One to be noted is that, the ,l in Eq.(11) is not constant any more, it yields: 
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Boundary-domain integral equations for boundary points can be obtained by locating y at the 

boundary Γ in Eq. (6). It is observed that the two domain integrals in the Eq. (6) arise from the 

material inhomogeneity and the inertial effect. Radial integration method (RIM) of Gao [19] 

was employed to transform the domain integrals into boundary integrals over the global 

boundary. The normalized displacements is approximated by a combination of the radial basis 

functions and the polynomials of global coordinates as 

0( ) ( )A A k

i i i k i
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i
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i j
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x  ,             (14a, b, c)   

where A (R) is the radial basis function, 
A

i , 
k

ia and 
0

ia  are unknown coefficients to be 

determined, xk and 
A

jx  denote the coordinates of the field point x and the application point A 

respectively. In this analysis, the following 4th order spline-type radial basis function was 

applied [20] 
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where R=||x-xA|| is the distance from the application point A to the field point x, and dA is the 

support size for the application point A. The two domain integrals of Eq. (6) are transformed 

into the boundary integrals in the form of [21] 
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where the relation xi=yi+r,ir is used to relate x with r. By rewriting Eq. (11) with rVV ijij  , 

the integral functions in Eqs. (16) and (17) can be expressed as 
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Since r,i in the above radial integrals is a constant, Eqs. (18b, c) can be evaluated analytically 

and the other integrals are calculated by standard Gaussian quadrature formula [22, 23]. 

Therefore the displacement boundary integral equations with only boundary integrals are 

obtained as 

, 1

,0 0 2 10

0

0 0

1
[

1 1
( ) ] [

1
( ) ]

kA A k

ij j ij j ij j j ij j ij

kk A A k

j k j ij j ij j ij

k

j k j ij

rr r
c u U t d T u d F d a F d

r n r n

rr r r
a y a F d P d a P d

r n r n r n

r
a y a P d

r n




 



   

  



 
       

 

  
      

  


  



   

  



.              (20) 



6 

 

Discretizing of the boundary with boundary elements and collocating the resulting boundary 

integral equations at all the boundary and internal nodes yield the following 2Nt x 2Nt 

generalized eigenvalue system for free vibration analysis, 

     2K X M X .                                                           (21)  

By solving this general eigenvalue equation, the eigenvalue ω and the corresponding mode 

shapes {X} can be obtained numerically.  

Numerical verification 

A comparison is made on the in-plane free vibration of an isotropic, homogeneous clamped 

circular plate with the study by Park [14] using Hamilton’s principle. In the comparison, the 

aluminum plate of a radius of 0.5m and a thickness of 5mm, E=71GPa, ρ=2700 kg/m3 and 

ν=0.33. To validate the analyzed results, the natural frequencies are also computed using the 

finite element method (FEM). The results of the present method are in good agreement with 

those of the FEM, which can be seen from the errors listed in Table 1. The present results are 

also close to the Ref. [8], even though solutions in Ref [8] are not complete, and some values 

are missing. This may be due to the reason that in Ref. [8], the displacements were assumed 

as the displacement multiple with a trigonometric function cosmθ or sinmθ, where m=0, 1, 

2…, ∞ was the circumferential wave number. The wave number had a correspondence 

frequency, if interchanging the trigonometric function cosmθ or sinmθ, another set of free 

vibration modes can be obtained. 

Table 1 Comparison of natural frequencies of the homogeneous clamped circular disk 

Mode Ref. [8] Present(Hz) FEM(Hz) error(%) 

1 3362 3360.1184 3360.3 0.0054 

2 - 3360.1340 3360.4 0.0079 

3 3835 3832.3110 3830.2 0.0551 

4 5219 5214.3752 5211.9 0.0475 

5 - 5214.3916 5212.1 0.0439 

6 5383 5374.0392 5369.4 0.0863 

7 - 5374.0648 5369.7 0.0812 

8 6626 6612.1173 6617.5 0.0814 

9 6764 6755.7080 6743.5 0.1807 

10 - 6755.7498 6743.8 0.1769 

11 6939 6911.3853 6911.2 0.0027 

12 - 6911.3953 6913.2 0.0261 

13 7021 6985.4645 6990.7 0.0749 

14 - 8082.0531 8084.4 0.0290 

15 - 8082.2690 8089.6 0.0907 

16 8130 8129.7628 8091.0 0.4768 

17 - 8294.3571 8273.8 0.2478 

18 - 8438.0543 8435.4 0.0315 

19 - 8438.1857 8437.9 0.0034 

20 8489 8499.8673 8512.4 0.1474 

21 - 8500.4750 8514.3 0.1626 

 

Another comparision is taking on the in-plane free vibration of the isotropic, homogeneous 

annular disks with several combinations of boundary conditions. The results of the present 
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method are compared with those available in the literature are tabulated in Table 2. Parameter 

η=Ri/R which is the ratio between inner and outer radii of the disk. The boundary conditions 

were free in inner and clamped in outer circumfrential and are expressed as F-C, and other 

boundary conditions are deduced from this. To validate the analyzed results, the natural 

frequencies are also computed using the FEM. It can be obtained that, the normalized natural 

frequencies calculated by using the present method agreed well with those of FEM and 

references. However in Refs. [9] and [10],  for F-C annular disks, the fundamental natural 

frequencies is close to the results of present method and FEM, but for the other two boundary 

conditions annular disks, the fundamental natural frequencies are close to the second 

frequencies of present method and FEM. 

 

 

Table 2 Comparison of non-dimensional fundamental natural frequencies of annular 

disks 

Radius 

ratio(η) 

Boundary 

conditions 
Mode Present FEM Ref. [10] Ref. [9] 

0.2 

F-C 1 2.0802 2.0983 2.1040 2.1060 

C-C 
1 2.4801 2.4614 - - 

2 2.7479 2.7347 2.7830 2.8060 

C-F 
1 0.3479 0.3444 - - 

2 0.9085 0.9060 0.9190 0.9400 

       

0.4 

F-C 1 2.4365 2.4272 2.5170 2.5220 

C-C 
1 3.1449 3.1285 - - 

2 3.3914 3.3607 3.4290 3.4560 

C-F 
1 0.8139 0.8105 - - 

2 1.2663 1.2631 1.2810 1.2960 

 

 

Since the in-plane free vibration of the circular FG disk are very rare in the literature, the 

result computed by the present method is compared with that by using FEM and presented in 

Table 3. In this example, the center of the disk is x0=0.5m, y0=0.5m, and R=0.5m, the material 

perperties are graded from center steel E=210GPa, ρ=7806kg/m3 along the radial direction to 

circumference aluminum E=70GPa, ρ=2707kg/m3. Three kinds of the boundary and internal 

nodes distribution are taken to investigate the efficiency of the present method and plotted in 

Fig. 2. From the comparision, it can be seen that, 36 boundary nodes and 73 internal nodes is 

sufficent to achieve the convergence results even for high frequencies. Increasing the internal 

nodes can accurate the results, thus the error between the results of the present method with 

36 boundary nodes and 145 internal nodes and those of FEM are vary small. The 

corresponding vibration modes are also obtained by using the presnet method and darwn in 

Fig. 3. 
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Figure 2 Boundary and internal nodes distribution 

 

 

 

 

Table 3 Comparison of non-dimensional natural frequencies of circular FG disk 

Modes 
Present 

FEM Error(%) 
36B37I 36B73I 36B145I 

1 1.7544  1.7815  1.7953  1.8196  1.3387  

2 1.7545  1.7816  1.7953  1.8196  1.3385  

3 2.1044  2.0880  2.0832  2.0843  0.0544  

4 3.0696  3.1550  3.1404  3.1494  0.2850  

5 3.0697  3.1551  3.1404  3.1494  0.2846  

6 3.2924  3.2440  3.2331  3.2314  0.0517  

7 3.2924  3.2440  3.2331  3.2314  0.0520  

8 4.2514  4.0276  4.0872  4.1249  0.9123  

9 4.2514  4.1782  4.2033  4.2041  0.0213  

10 4.4116  4.1782  4.2033  4.2041  0.0208 

 

 

Figure 3 First ten mode shapes of clamped circular FG disk 

Free vibration of the circular and annular FG disks 
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In this part, the present method is used to analysis the free vibration of the circular and 

annular FG disks with kinds of combination of boudary conditions. A steel/aluminum FG 

material is cosidered for all the numerical analyses, thus the matrterial properties can start 

from steel or aluminum and grade in the radial direction. For circular disks, the material 

properties grade from steel in the center to the outer edge aluminum are noted as S-A circular 

disk, A-S circlar disk means the material properties are grading in an opposite order. S-A 

annular disk presents the material properties grade from steel in the inner edge to outer 

aluminum edge. Only clmaped boundary support is taken in FG circular disks analyses. For 

annular FG disks, the free and clamped conditions at the inner and outer edges are noted as F-

C, and so on C-F as well as C-C are also considered in the annular FG disks analysis. All the 

results were all normalized by   steel
i

steel

R R
E


   . 

 

The first five normalized natural frequencies of clamped circular FG disks are shown in Table 

4. To compared the circular FG disks with the homogeneous one, the normalized natural 

frequencies for the steel and aluminum disks are also listed. It can be seen that, the 

normalized natural frequencies of S-A(β=-1.0986, γ=-1.0591) < Aluminum(β=0, γ=0) < 

Steel(β=0, γ=0) < A-S(β=1.0986, γ=1.0591). That is with increasing the material gradients, 

increase the natural frequencies. For the homogeneous aluminum and steel, the material 

gradients are all equal to zero, in this case, the harder stiffness leads to the higher natural 

frequencies. It can be obtained that, by using the corresponding FG materials instead of the 

homogeneous material, can reduce or increase the natural frequencies of circular disks. 

 

Table 4 First five normalized natural frequencies of clamped circular FG disks 

Circular disks ϖ=1 ϖ=2 ϖ=3 ϖ=4 ϖ=5 

S-A 1.7927 1.7927 2.0834 3.1446 3.1446 

Aluminum 2.1590 2.1590 2.3282 3.2802 3.2802 

Steel 2.2022 2.2022 2.3747 3.3457 3.3457 

A-S 2.5701 2.5701 2.6300 3.5125 3.5125 

 

Table 5 First five normalized natural frequencies of kinds of annular FG disks 

Radius 

ratio(η) 
Modes 

F-C C-C C-F 

A-S S-A A-S S-A A-S S-A 

0.2 

1 2.1794 1.5050 2.3217 1.8726 0.2073 0.4002 

2 2.2668 1.5050 2.6141 2.2271 0.6332 0.9141 

3 2.2668 1.6275 2.6141 2.2271 0.6332 0.9141 

4 2.5965 1.9757 3.1886 2.8651 1.0528 1.5327 

5 2.5965 1.9757 3.1886 2.8652 1.0529 1.5327 

 
       

0.4 

1 1.8157 1.2719 2.1766 1.8283 0.3839 0.6625 

2 2.0013 1.3714 2.3598 2.0260 0.6814 0.9398 

3 2.0013 1.3714 2.3598 2.0260 0.6814 0.9398 

4 2.2527 1.5038 2.8034 2.4727 1.0336 1.4118 

5 2.2528 1.5039 2.8034 2.4727 1.0336 1.4118 
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0.6 

1 1.6742 1.0231 2.1128 1.8465 0.5402 0.8548 

2 1.8051 1.1460 2.1790 1.8917 0.6891 0.9553 

3 1.8124 1.1460 2.1790 1.8917 0.6891 0.9553 

4 1.8126 1.3464 2.3863 2.1216 0.9729 1.2128 

5 1.9151 1.3464 2.3863 2.1216 0.9729 1.2128 

 
       

0.8 

1 1.2539 0.8166 2.0318 1.7238 0.7050 0.9582 

2 1.4467 0.8234 2.0321 1.7931 0.7479 0.9619 

3 1.4550 0.8234 2.1098 1.7931 0.7479 0.9619 

4 1.4551 0.9147 2.2030 1.8054 0.8418 1.0482 

5 1.5376 0.9148 2.2030 1.8057 0.8418 1.0482 

 

The first five normalized natural frequencies of two kinds of annular FG disks with three 

boundary conditions as well as four radius ratios are also shown in Table 5. It can be seen that, 

for F-C and C-C annular FG disks, increasing the annular radius ratio would decrease the 

natural frequencies, and for the same radius ratio, the higher material gradients give rise to 

higher natural frequencies. But for C-F annular disks, that is clamped at the inner edge and 

free at the outer edge, increasing the radius ratio would increase the natural frequencies and 

the smaller material gradients the higher the natural frequencies, these regularities are all 

oppositing with that of F-C and C-C annular disks. Thus it can be concluded that, the material 

gradiens, radius ratios and boundary conditions all affect the free vibration of the annular FG 

disks a lot. 

Conclusion 

In this paper, the free vibration of the circular and annular FG disks were analyzed by a 

meshfree boundary-domain integral equation methods. The material properties were graded 

along the radial direction from center or inner edge to outer edge for circular and annular 

disks respectively. From the numerical analyses, it can be concluded that, the present method 

has fast convergence, high efficiency and accuracy. 
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