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Abstract 

In this paper, the higher order cell-based smoothed finite element method based on the first-order 

shear deformation theory is used for the analysis of laminated composite plates. The domain is 

discretized with eight-node Mindlin plate elements of serendipity family (Q8 elements). Higher 

order finite element with Q8 elements using the selectively reduced integration is known to alleviate 

the shear-locking phenomenon. However, it still produces shear-locking phenomenon below a 

certain thickness-span ratio and also yields poor solutions and sub-optimal convergence rates with 

distorted meshes. In this paper, we propose a novel approach to eradicate the shear-locking 

phenomenon and improve the quality of the solutions by employed a linear smoothing technique. 

Within this technique, each Q8 element is subdivided into eight smoothing cells, and a modified 

strain is computed over the smoothing cell by using a linear smoothing procedure. The modified 

bending strain and shear strain are computed by the divergence theorem between the nodal shape 

functions and their derivatives in Taylor’s expansion within each smoothing cell. Several numerical 

examples indicate that the novel approach can eradicate the shear-locking and also yield more 

reliable results for the distorted meshes. 

Keywords: Laminated composite plates, S-FEM, linear smoothing technique, shear-locking, 

distorted meshes. 

Introduction 

Due to the remarkable weight-to-stiffness, strength-to-stiffness characteristics and the advantage of 

designable, laminated composite plates are widely used in engineering structures as diverse as 

aerospace, aircrafts, automotive structural parts, civil engineering structures, etc. Many plate 

theories have been successfully applied to analyze the laminated composite plates. The first-order 

shear deformation theory is widely used in the analysis of composite plates [1]. In addition, Hinton 

and Zienkiewicz [2, 3] explicitly indicated that the eight-node Mindlin plate elements of serendipity 

family (Q8 elements) still suffer from the shear-locking phenomenon below a certain thickness-span 

ratio and yields poor solutions of distorted meshes. 

 

In order to eliminate shear-locking phenomenon and improve the quality of finite element solutions 

over simplex elements, recently, Liu et al. [4]-[6] proposed a smoothed finite element method (S-

FEM), which is based on the stabilized conforming nodal integration (SCNI) of mesh-free method 

[7], Note that all the types of S-FEM use finite element with linear interpolants, and the strain 

smoothing technique over the higher order elements exhibits poor performance [8]. Francis et al. [9] 

proposed a linear strain smoothing scheme with the framework of CS-FEM to improve accuracy of 

arbitrary convex polytopes with linear or quadratic interpolants, which was based on the recent 

work of Duan et al. [10].  

 

In this paper, with the aim of eliminating the shear-locking phenomenon and improving the 

accuracy of the solution with distorted meshes, a higher order CS-FEM with eight-node Mindlin 

plate elements is developed based on the first-shear deformation theory, which is a further 



 

application of the linear smoothing technique. With this technique, as shown in Fig .1, each Q8 

element is subdivided into eight smoothing cells, and the modified bending strain and shear strain 

are computed by the divergence theorem between the nodal shape functions and their derivatives in 

Taylor’s expansion within each smoothing cell. This eliminates the need for isoparametric mapping 

and all the domain integration are transformed into boundary integration. Meanwhile, the proposed 

approach can effectively treat the shear-locking phenomenon for both thin and relatively thick 

plates, and the effect of the mesh distortion to the accuracy can be relieved.  

Basic formulations 

According to the first-shear deformation theory, the displacements field of the laminated composite 

plates (shown in Fig. 1) can be expressed as 
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Fig. 1. (a) Laminated composite plate axes system. (b) Layer details. 

The modified strain is given by  

 ( ) ( ) ( )d
s

k


 ε x ε x q x   (2) 

In the process of computing the modified strain matrix b

IB  and s

IB , the consistency form should be 

met by the terms related the shape function ( )IN x  and the derivative of shape function 

, ( )I iN x ( , )i x y . According to Eq. (2) and implementing the divergence theorem, we can obtain 
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Fig. 2. Division of a Q8 plate element into eight smoothing cells 
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The evaluation of the modified derivatives , ( )I xN x  is firstly presented. To begin with, , ( )I xN x  and 

 q x  are treated by Taylor’s expansion, and the expanded form of , ( )I xN x  and  q x  are expressed 

as 

    , , , ,( ) ( ) ( ) ( ) H.O.TI x I x c c I xx c c I xy cN N x x N y y N     x x x x   (5) 

    , ,( ) ( ) ( ) ( ) H.O.Tc c x c c y cx x y y     q x q x q x q x   (6) 

where H.O.T  is the higher order term. , ( )I xN x  is replaced by , ( )I xN x , then, substituting Eqs. (5) 

and (6) into Eq. (3), whereafter, one interior integral point is used for the left hand side of Eq. (3), 

and two integral point on each edge of the smoothing cell are employed for the right hand side of 

Eq. (3), and the subdivision of a Q8 element into smoothing cells is shown in Fig. 2. We can obtain  
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where A  is the area of the smoothing cell, and 
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Substituting Eq.(4) into Eq.(7) and the two Gauss points on each edge is used for the evaluation of 

the boundary integral, therefore, the expanded form is expressed as  
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where  
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Then, the modified derivatives can be obtained by analytically solving Eq. (9). Therefore, , ( )I x cN x , 

, ( )I xx cN x  and , ( )I xy cN x  are given as 
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In such a way, the evaluation of the modified derivatives, , ( )I y cN x , , ( )I yx cN x  and , ( )I yy cN x  can be 

obtained. 

 

After that, the modified bending and shear strain matrices, and the modified derivatives of the 

bending and shear strain matrices can be respectively expressed as 
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By using the Taylor’s expansion with respect to the each smoothing cell center cx , smoothed 

stiffness matrix  are rewritten as  
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where  

 1 2 8[ ]b b b bB B B B   (20) 

and 

 1 2 8[ ]s s s sB B B B   (21) 

Finally, the smoothed stiffness matrix IJK  are rewritten as  

 

 b s

IJ IJ IJ K K K   (22) 

Numerical examples and results 

Firstly, the shear-locking test is presented. Isotropic simply supported square plate with side length 

10a   under uniform load P. The deflection is normalized as 4ˆ / ( 100 )w w Pa D , where 
3 212(1 )D Et v  . Fig. 3 shows the locking test results for the isotropic clamped square plate. It 

can be seen that present method can eradicate the shear-locking. 
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Fig. 3 Shear-locking test for a simply supported square plate 



 

Secondly, two simply supported symmetric cross-ply ( 0 / 90 / 0    ) square plates are considered, the 

length to thickness ratios is / 100a h  , The material parameters are 1643  , 9

22 7.6 10E   , 

11 2225E E , 12 13 220.5G G E  , 23 220.2G E , and 11 0.25v  . Both present results , Liu’s and 

Reddy’s solutions are listed  in Table 1 for comparison purpose. Good agreement can be observed 

for all modes. In addition, the first six modes are shown in Fig. 4. 

 

Table 1. Nondimensionalized natural frequencies of simply supported symmetric cross-ply 

( 0 / 90 / 0   ) square composite plates with RI (
2 2

22a E h   ) 

Mode 
Number of 

elements 

   

Present method Liu GR et al.  Reddy 

1 

88 15.1795 

15.127 15.183 
1616 15.1645 

2020 15.1656 

2424 15.1665 

 

2 

88 23.0857 

22.658 22.817 
1616 22.8351 

2020 22.8193 

2424 22.8132 

 

3 

88 41.8609 

39.644 
40.153 

 

1616 40.3884 

2020 40.2707 

2424 40.2198 

 

4 

88 56.1309 

55.452 56.210 
1616 55.9385 

2020 55.9479 

2424 55.9575 

 

5 

88 60.2757 

59.289 60.211 
1616 59.9252 

2020 59.9378 

2424 59.9510 
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Fig. 4 The first six modes of the simply supported symmetric cross-ply square plates 
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