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Abstract 

Researches on manipulating acoustic waves by anisotropic materials, especially, acoustic 

metamaterials, have received much attention. In this paper, an attempt is made to develop a 

new kind of 3-D acoustic metamaterial, which is constructed by embedding high-modulus 

membranes into soft isotropic materials. To begin with, two unit cell models of the acoustic 

metamaterials are established, which have an embedded single-layer membrane or embedded 

double-layer membranes. Then dispersion characteristics of the unit cells in the low frequency 

range are simulated by the finite element method; meanwhile, considering different angles of 

incidence of elastic waves, we use the transient response full integration method and the 

asymptotic homogenization method to calculate average velocities of elastic waves 

propagating in the unit cells. Subsequently, influences of structure parameters of the unit cells 

on the wave velocities are investigated. In the end, we establish a full wave simulation model 

of the three-dimensional membrane-embedded-type acoustic metamaterial and illustrate the 

propagation characteristics of acoustic waves in the metamaterial. 
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Introduction 

Recently, researchers pay more attention to studies of manipulating acoustic waves by 

acoustic metamaterials, including acoustic cloaks, perfect focusing acoustic lenses and 

acoustic omnidirectional absorbers [1]-[3]. In general, acoustic metamaterials are constructed 

by periodically embedding local oscillators into base materials to produce local resonance, or 

embedding materials with high-contrast modulus into acoustic materials to cause multiple 

scattering of acoustic waves, or directly tailoring solid materials based on homogenization 

theory. In 2008, Mei, Yang et al. investigate a membrane-type acoustic metamaterial by means 

of simulation and experiment, where a small mass block is placed at the center of a membrane 

as a source of local resonance to realize acoustic absorption within the low frequency range 

[4]. Subsequently, researches on membrane-type acoustic metamaterials mainly highlight 

mechanical properties of the elastic membranes, such as ultra-thin size and ultra-light weight. 

And the acoustic characteristics of the metamaterials as well as the locally resonant 

frequencies and vibration modes can be designed, to some extent, by adjusting sizes of 

membranes, pre-stress applied in membranes and shapes of mass block [5]-[7]. However, 

most of the work focuses on acoustic insulation and absorption performance, and there has 

been very little study of controlling wave propagation paths in the membrane-type acoustic 

metamaterials. And related studies refer to active acoustic metamaterials, for example, Popa et 

al. design a class of tunable active acoustic metamaterials by using piezoelectric membranes 



in 2013 [8]. 

Metamaterials with strong acoustic anisotropy can make acoustic propagation paths bend 

drastically, like curving and distorting, which is significant for practical acoustics problems 

with limited design spaces. In the paper, a kind of 3-D membrane-embedded-type acoustic 

metamaterial is constructed by embedding high-modulus membranes into low-modulus 

materials, where the in-plane stiffness of the embedded membrane is greatly different from 

the out-of-plane stiffness. In principle, the strong acoustic anisotropy of the metamaterials can 

be obtained by virtue of compositing isotropic materials with high-contrast modulus, and the 

directivity of wave propagation and dispersion characteristics of metamaterials can be 

controlled by tailoring the membranes or adjusting tensions or pre-deformations of the 

membranes. We mainly address acoustic characteristics of the membrane-embedded-type 

metamaterials, unit cells of which consist of soft rubber and a single-layer membrane or 

double-layer membranes. Firstly, dispersion characteristics of the unit cells are investigated in 

the low frequency range by the finite element method. Secondly, considering different 

incidence angles of acoustic waves, average velocities of wave propagation are calculated by 

both the transient response full integration method and the asymptotic homogenization 

method. Subsequently, influences of structure parameters of the unit cells on the acoustic 

wave velocities are studied. Finally, numerical examples are given to illustrate the wave 

propagation from homogeneous rubber materials to anisotropic composite materials 

consisting of rubber and embedded multi-layer membranes. 

Unit cell models and analysis theory 

According to the elastic dynamic theory, if an elastic wave propagates in the linear elastic and 

anisotropic inhomogeneous media, without regard to damping and external excitation, the 

wave equation can be expressed as 
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Where ( , , )r x y z  are position vectors, ( )C r  and ( ) r  are elasticity tensors and 

mass-density tensors, respectively; ( , , )u x y zu u u  are displacement vectors; 

( / , / , / )       x y z  stands for the differential operator; the colon “:” means double dot 

product; t  is the time variable. 

For a periodic structure consisting of unit cells, according to Bloch’s theorem of periodic 

differential equations, we have 
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Where 1 i ， ( , , )k
x y z

k k k  are wave numbers, ( )
k

u r  is a periodic function with the 

same period as one of the periodic structure. Considering periodicity of the structure, in order 

to reduce the redundant calculation, we just analyze dispersion characteristics of a unit cell. 

During solving the wave equation by the finite element method, the unit cell is discretized and 

its eigen circular frequencies   associated with the eigenmodes U  satisfy 
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constant, the boundary condition for the unit cell can be written as 
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The unit cell is a symmetric structure as shown in Fig.1 or Fig.2, where a single-layer 

membrane or double-layer membranes are embedded into a soft isotropic material. The 

cross-section of the membrane is square, and its thickness is mh ; in Fig.1, zh  is the 

embedded depth of the single-layer membrane; in Fig.2, H  is the distance between the 

embedded double-layer membranes. It is assumed that the membrane is made of iron, and the 

material parameters are as follows: the modulus of elasticity 112.1 10 mE Pa , Poisson's 

ratio 0.3m   and the density 37860 /m kg m  . Meanwhile, we choose rubber as the soft 

isotropic material, and the material parameters are the modulus of elasticity 
67.8 10 rE Pa , 

Poisson's ratio 0.47r   and the density 
3980 /r kg m  . 

    

Figure 1.  Unit cell with an embedded single-layer membrane 

        

Figure 2.  Unit cell with embedded double-layer membranes 

Based on Eq.(3) and Eq.(4), after Floquent-Bloch boundary conditions are applied to the unit 

cell, dispersion characteristics of the unit cell are obtained. During the finite element analysis, 

in order to control the out-of-plane stiffness of the embedded membrane, we need adjust 

pre-stress applying to the membrane, so solid elements and membrane elements should be 

coupled to implement the simulation. 

Analysis of dispersion characteristics 

We take unit cells in Fig.1 and Fig.2 for examples to simulate dispersion curves of the unit 

cells with different mh . Supposing that the pre-stress applied to the membrane along the z 

axis of Cartesian coordinate system  , ,x y z  is zero, the pre-stress along the x-axis is 

200 /T N m , the lattice constant is 50a mm , the distance between the double-layer 

membranes is 30 H mm , the simulation results are shown in Fig.3(a)-(d) and Fig.4(a)-(d), 

where wave numbers are defined along the x-axis and the z-axis in the first Brillouin zone. 



For the unit cell with a single-layer membrane in Fig.1, Fig.3(a)-(d) display dispersion curves 

while mh  are 0.01mm , 0.09mm , 0.25mm  or 0.49mm ; similarly, corresponding to the 

unit cell with double-layer membranes with 30 H mm , Fig.4(a)-(d) display dispersion 

curves while mh  are 0.01mm , 0.09mm , 0.25mm  or 0.49mm . In all the figures, every 

red straight line is the tangent to a fitting curve to a series of data points among simulation 

results. According to the wave theory, the wave velocity c , the frequency f  and the wave 

numbers k  satisfy 
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Thus, the slope of every red straight line is corresponding to either the shear wave velocity or 

the longitudinal wave velocity. 

 
(a)               (b)               (c)               (d) 

Figure 3. Dispersion curves of the unit cell with a single-layer membrane 

 
(a)              (b)               (c)               (d) 

Figure 4. Dispersion curves of the unit cell with double-layer membranes 



For an orthotropic material, the equivalent mass density 0  can be calculated by 
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In a unit cell, m  is the mass density of the membrane; mmh  is the total thickness of the 

membranes, for a unit cell with a single-layer membrane, mm mh h , for a unit cell with 

double-layer membranes, 2mm mh h ; r  
is the mass density of rubber; rh  is the total 

thickness of rubber; h  denotes the thickness of the unit cell and satisfies  r mmh h h . In 

addition, equivalent modulus of elasticity of the unit cell E  can be described as 
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Where E  is a symmetric matrix, 
ijklE  stands for tensor of elasticity, and the subscripts 

, , , 1,2,3i j k l  are corresponding to coordinate axes of , ,x y z , respectively. Based on 

Christoffel’s equation, we have 

2
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and  , 1,2,3jv j   are displacement components of a point in the unit cell, 1n , 2 n  and 3n  

represent direction cosines of wave numbers. 

If max  is the maximum eigenvalue of matrix  , velocities of longitudinal waves in 

directions  1 2 3,  ,  n n n  can be described by the formula 

max
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For unit cells in Fig.1 and Fig.2, setting 50a mm , 0.5mh mm , 30 H mm , we employ 

the asymptotic homogenization method (AHM) to calculate equivalent moduli of elasticity 

 , , , , 1,2,3ijklE i j k l , and results are listed in Table 1. In addition, by further analyzing, we 

figure out average velocities of elastic waves propagating in the unit cells, including 

longitudinal wave velocities Bxc  and Bzc , shear wave velocities Gxyc , Gxzc  and Gyzc , which 

are shown in Table 2. Meanwhile, we analyze dispersion characteristics of the unit cells and 

compute average velocities in the low frequency range according to dispersion curves (DCM). 

The results are also in Table 2. By comparison, it can be found that result errors between 



AHM and DCM are very little, which verifies the simulation results. 

Table 1.  Equivalent moduli of elasticity of unit cells / MPa  

Unit cell 1111
E  

2222
E  

3333
E  

2323
E  

1313
E  

1212
E  

1122
E  

1133
E  

2233
E  

Single-layer 

membrane 
2354.6 2354.6 46.9 2.7 2.7 810.4 733.9 41.6 41.6 

Double-layer 

membranes 
4662.3 4662.3 46.9 2.7 2.7 1618.0 1426.2 41.6 41.6 

Table 2.  Wave velocities calculated by both methods / m / s  

Unit cell Methods Bxc  Bzc  Gxzc  Gxyc  
Gyzc  

Single-layer 

membrane 

AHM 1498.3 211.4 50.3 879.0 50.3 

DCM 1490.5 210.4 50.1 874.8 50.1 

Double-layer 

membranes 

AHM 2042.5 204.8 48.7 1203.2 48.7 

DCM 2024.6 202.9 48.4 1192.8 48.3 

Influence of structure parameters of unit cells on wave velocities 

In order to investigate acoustic characteristics of the 3-D membrane-embedded-type 

metamaterials, we can analyze equivalent elastic moduli of unit cells and ratios between the 

elastic moduli, or study propagation velocities of elastic waves in unit cells and ratios 

between the velocities. In this section, we will research the influence of structure parameters 

of unit cells on wave velocities and wave velocity ratios. 

Influence of thickness of membranes on wave velocities 

For a unit cell with a single-layer membrane, defining velocity ratios of IT  and IIT  as 

/I Bx GxzT c c , /II Bz BxT c c , we calculate average velocities of an elastic wave in the unit cell 

and velocity ratios, where the unit cell has different mh . The results are shown in Table 3 and 

Fig.5, where IT  describes the coupling relationship between longitudinal waves and shear 

waves; IIT  indicates anisotropic characteristics of the unit cell. 

Table 3.  Average wave velocities in the unit cell with different m
h  /m / s  

mh (mm) 
m

h ( mm ) Bxc    Bzc  Gxzc  Gxyc  
Gyzc  

0.01 0.1 307.85 218.52 52.02831 138.43 51.98913 

0.04 0.2 484.45 218.00 51.90377 261.15 51.86466 

0.09 0.3 681.86 217.13 51.69815 385.87 51.65909 

0.16 0.4 883.83 215.94 51.41430 509.66 51.37521 

0.25 0.5 1085.10 214.44 51.05608 631.48 51.01708 

0.36 0.6 1283.30 212.64 50.62853 750.64 50.58991 

0.49 0.7 1476.90 210.57 50.13427 866.69 50.09949 



 
(a)                     (b)                        (c) 

Figure 5.  Relationship between wave velocities or wave velocity ratios and 
m

h  

Seeing from Table 3 and Fig.5(a), we find that with the increase in mh , both the 

longitudinal wave velocity Bxc  and the shear wave velocity 
Gxyc  increase greatly; however, 

the longitudinal wave velocity Bzc  and the shear wave velocities Gxzc  and 
Gyzc  change 

very little. Consequently, the velocity ratio of
 IT  increases linearly with mh ,

 
and the 

velocity ratio of IIT  reduces significantly, as shown in Fig.5(b) and (c). Obviously, the 

thickness of membranes mh  has a great influence on the anisotropic characteristics of the 

unit cell. 

Influence of inclination angles of membranes on wave velocities 

For a unit cell with a single-layer membrane, we set 0.5mh mm  , 50a mm  and use   

to denote the inclination angle of the membrane, which is defined as the included angle 

between the normal vector of the membrane and the z axis. It is assumed that incident waves 

are either along the x-axis or the z-axis, we vary   from 0o  to 45o  with an interval of 

15o , and employ the transient response full integration method (TRM) to simulate 

displacement-time curves. Simulation results are in Fig.6, where Fig.6(a)-(d) are 

corresponding to different  . 

 

(a) 0   



 

(b) 15   

 

(c) 30   

 

(d) 45   

Figure 6.  Displacement-time curves corresponding to different   

By further analysis, we calculate the average velocities of elastic waves, including the wave 

velocity along the x-axis x
v  and the wave velocity along the z-axis z

v . Meanwhile, both 

the asymptotic homogenization method (AHM) and the dispersion characteristic analysis 

method (DCM) are also used to compute x
v  and z

v . And all the wave velocities 



calculated by the three methods are listed in Table 4. Seeing from Table 4, we find that wave 

velocities along the x-axis and the z-axis change smoothly while   increases from 0o  to 

30o , and when   reaches 45o , both x
v  and z

v  change greatly, especially the wave 

velocities along the z-axis. 

Table 4.  Average wave velocities in the unit cell with different   

  
 

015  030   

Average wave 

velocity(m/s)  zv   zv   zv   zv  

AHM 1498 211 1443 210 1521 212 1840 1275 

DCM 1491 210 1446 209 1518 204 1741 1232 

TRM 1429 211 1418 211 1485 210 1768 1290 

Influence of pre-stress applied to membranes on wave velocities 

We take unit cells with a single-layer membrane or double-layer membranes for examples, 

and establish finite element models as shown in Fig.7. 

 

Figure 7.  Finite element models of unit cells with pre-stressed membranes 

It is assumed that 0.5mh mm , 50a mm  and the in-plane pre-stress of the membranes is 

200 /T N m . During the simulation process, a uniformly distributed load in the z axis is 

applied to the membranes to produce a certain pressure of P . In order to investigate the 

influence of the pressure on wave velocities, we vary the uniformly distributed load to make 

P  applied to membranes change from 0 MPa  to 30MPa . Here,   is used to denote the 

velocity ratio, which is defined as 
0

/  Bz Bzc c , where 
0Bzc  and Bzc  stand for the average 

velocities of longitudinal waves while 0P MPa  and 0P MPa , respectively. Fig.8 shows 

the relationship curves between   and P . In Fig.8(a), one curve is corresponding to the 

unit cell with a single-layer membrane, and the other corresponding to the unit cell with 

double-layer membranes. Fig.8(b) shows the simulation results of the unit cell with 

double-layer membranes, where H  is different. Seeing from Fig.8, we find that, for the 

unit cell with a single-layer membrane, the waves velocities along the z-axis Bzc  increases 

rapidly according to the increase in the pressure of P ; for the unit cell with double-layer 

membranes, Bzc  increases linearly with P . In addition, when P  reaches 30MPa ,   of 

the unit cell with a single-layer membrane becomes bigger than that of the unit cell with 

0o 045

xv xv xv xv



double-layer membranes. And meanwhile, for the unit cell with double-layer membranes, the 

distance between double-layer membranes also has a great influence on wave velocities, and 

Bzc  changes with the increase in H . 

 

(a)                              (b) 

Figure 8. Relationship curves between ratios of the velocity and the pressure 

Therefore, for a unit cell with an embedded single-layer membrane, we can adjust the 

pressure applied to the membrane to control the wave velocity along the z-axis; and for a unit 

cell with embedded double-layer membranes, we can change P  and H  to make Bzc  

reach a required value. 

Acoustic characteristics of three-dimensional membrane-embedded-type metamaterials 

In order to research acoustic characteristics of three-dimensional membrane-embedded-type 

metamaterials, we establish a finite element model as shown in Fig.9, which includes two 

parts, one is the isotropic rubber block and the other is the N-layer composite materials, where 

every layer of composite materials can be considered as a unit cell consisting of rubber and 

embedded single-layer or multi-layer membranes. Assuming that the incident wave is a plane 

wave with an incident angle of  , the thickness of every unit cell is h , the equivalent 

modulus of elasticity of the unit cell in the ith  layer is  1,2, ,iE i N , the thickness 

of a membrane is mh , we simulate the wave propagation in the membrane-embedded-type 

metamaterial. 

 

Figure 9.  Finite element model 

In this case, we set 1 2   NE E E , 0.5mh mm , the modulus of elasticity of rubber is 

67.8 10 rE Pa , the modulus of elasticity of membrane is 112.1 10 mE Pa , and simulation 

results are shown in Fig.10, where Fig.10(a) and (b) are corresponding to 30  o
 and 

90  o
, respectively. Obviously, in the metamaterial, the wave propagation path bends at the 

interface between the rubber block and the composite materials, but in the N-layer composite 



materials, the wave propagation direction does not change. That is because the equivalent 

modulus of elasticity of every unit cell is same. 

 
(a) 30  o

                      (b) 90  o
 

Figure 10.  Color nephogram of the wave propagation 
Next, in order to further research wave propagation in the membrane-embedded-type 

metamaterial,  1,2, ,iE i N  are given in the form of a geometric progression with a 

scale factor q , and in this way, the equivalent modulus of elasticity of the unit cell in the ith  

layer can be expressed as 

1

0( )  i

iE y E q                              (11) 

Where, 
0E  is a given value; 1 ( 1)y h h i   , and y  represents the coordinate position of 

the unit cell in the ith  layer, 1h  is the embedded depth of the first layer membrane. 

In one case, we set 30  o

, 
6

0 7.8 10 E Pa , 10.0q ; and in another case, we set 

30  o , 11

0 2.1 10 E Pa , 0.1q . Simulation results are shown in Fig.11, where Fig.11(a) 

and (b) are corresponding to 10.0q  and 0.1q , respectively. Clearly, it can be observed 

that the wave propagation path bends not only at the interface between the rubber block and 

the composite materials, but also at the interfaces between any two adjacent unit cells, and 

meanwhile, with the increase in iE , the deflection angle of wave propagation becomes bigger 

and bigger.  

 
(a) 10q                        (b) 0.1q  

Figure 11.  Color nephogram of the wave propagation 



Conclusion 

In this paper, we develop a new kind of 3-D membrane-embedded-type acoustic metamaterial, 

which is constructed by embedding high-modulus membranes into soft isotropic materials. 

Research shows the acoustic metamaterial has great potential for controlling propagation 

directions and propagation velocities of acoustic waves. The main conclusions are as follows: 

Firstly, for unit cells of the acoustic metamaterial, the thickness of embedded membranes has 

a great influence on anisotropic characteristics of the unit cells. When the thickness of 

membranes varies in a certain range, the thicker the membrane is, the stronger the anisotropic 

characteristic of the unit cell is. Moreover, velocity ratios between longitudinal waves and 

shear waves almost increase linearly with the square root of the thickness of membranes. 

Secondly, for unit cells of the acoustic metamaterial, inclination angles of embedded 

membranes have a certain influence on propagation velocities of elastic waves. When the 

inclination angle varies from 0o  to 30o , wave velocities along the x-axis and the z-axis 

change smoothly; and when the inclination angle reaches 45o , the wave velocities change 

greatly, especially the wave velocities along the z-axis. 

Thirdly, for unit cells of the acoustic metamaterial, the pre-stress applied to membranes has a 

great influence on wave velocities. When the pre-stress varies in a certain range, propagation 

velocities of longitudinal waves mostly increase linearly with the pre-stress. In addition, for 

unit cells with multi-layer membranes, the distance between adjacent membranes also has a 

great influence on wave velocities, and propagation velocities of longitudinal waves change 

significantly with the increase in the distance between adjacent membranes. 

Finally, the propagation directions and propagation velocities of low frequency acoustic 

waves in the 3-D membrane-embedded-type acoustic metamaterial can be designed by simply 

analyzing and calculating the equivalent moduli of elasticity of unit cells. Furthermore, the 

control of acoustic waves can be realized by adjusting structure parameters of every unit cell, 

including the thickness of membranes, the inclination angles of membranes and the pre-stress 

applied to membranes. 
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