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Abstract 
The CFD simulations of vortex-induced vibrations of a flexible riser under a swaying and 
surging platform have been numerically investigated based on the strip theory. The top end of 
the flexible riser are forced to oscillate in one or two directions. Three cases are considered, 
one with only one-direction excitation, one with ‘∞’-shaped excitation trajectory, and one 
with parabolic excitation trajectory. When the riser was excited in a parabolic trajectory, the 
vibrations in both directions are enhanced. However, vibrations can be reduced in the ‘∞’-
shaped trajectory case, in which a ‘hat’-shaped trajectory has been observed from a reference 
frame which moves with the straight riser axis.  
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Introduction 

Marine risers can experience vortex-induced vibrations (VIV) when exposed to currents. 
Furthermore, offshore floating platforms subject to waves, currents or winds may cause risers 
to reciprocate in the water. The risers are thus exposed to a relatively oscillatory flow with a 
degree of shear and forced to cross its own wake, rendering the situation more like wake-
induced vibrations. The vortex shedding frequencies keep going up and down due to the 
continuous flow velocity changes. Lock-in or resonance phenomena occur when the vortex 
shedding frequencies meet one of the risers’ natural frequencies.  
 
Vortex-induced vibrations of risers subject to waves or top-end excitations have received 
more and more attention. Duggal et al.[1] conducted a large-scale experimental study of 
vibrations of a long flexible cylinder in regular waves. Also some researchers [2–4] conducted 
experimental and numerical studies on vibrations of a hanging riser subject to regular or 
irregular top-end excitations. Riveros [5] experimentally and numerically studied a model riser 
sinusoidally excited at its top end.  
 
Most of previous numerical studies of risers subject top-end excitations mainly concentrate on 
excitations in one direction. However, the top-end platform actually moves in more than one 
direction, making it necessary for research on two-directional excitations. In the present work, 
vibrations of a vertical top-tensioned riser sinusoidally excited at its top end in one or two 
directions are numerically investigated using a CFD method based on strip theory. The 
simulations are conducted by the in-house solver viv-FOAM-SJTU, which has been validated 
in previous studies [6,7]. The present article is organized as follows. Section 2 introduces the 
concerned problems, followed by the simulation methods in Section 3 for handling the 
problems in Section 2. And Section 4 gives the simulation results with detailed analyses. 
Finally, a curt summary is presented in Section 5. 



Problem 

To simulate the effect of the top-end platform’s motions, the top end of the riser is forced to 
oscillate in one or two directions. The excitation motion of the riser is a periodic function of 
time, expressed as 
 
 𝑥𝑥s = 𝐴𝐴 ⋅ sin(2π𝑡𝑡 ⋅ 𝑇𝑇w−1) ,  (1) 
 𝑢𝑢s = 2π𝐴𝐴 ⋅ 𝑇𝑇w−1 ⋅ cos(2π𝑡𝑡 ⋅ 𝑇𝑇w−1) ,  (2) 
 
𝐴𝐴  being the oscillating amplitude and 𝑇𝑇w  the oscillating period, 𝑥𝑥s  the oscillating 
displacement and 𝑢𝑢s  the oscillating velocity. The maximum excitation reduced velocity 
𝑈𝑈r max can be written as 
 
 𝑈𝑈r max = 𝑢𝑢s max

𝑓𝑓n1𝐷𝐷
= 2π𝐴𝐴

𝑇𝑇w𝑓𝑓n1𝐷𝐷
 ,  (3) 

 
where 𝑓𝑓n1 is the first natural frequency of the riser. In the sinusoidal flow, the Keulegan-
Carpenter (𝐾𝐾𝐾𝐾) number can be expressed as 
 
 𝐾𝐾𝐾𝐾 = 𝑢𝑢s max𝑇𝑇w ⋅ 𝐷𝐷−1 = 2π𝐴𝐴 ⋅ 𝐷𝐷−1 , (4) 
 
in which 𝑢𝑢s max is the maximum excitation velocity. 
 
Table 1: Main structural properties of the flexible riser. 

 Symbols Values Units 
Mass ratio 𝑚𝑚∗ 1.53 − 
Diameter 𝐷𝐷 0.024 m 
Length 𝐿𝐿 12 m 
Bending stiffness 𝐸𝐸𝐸𝐸 10.5 N ⋅ m2 
Top Tension 𝑇𝑇w 500 N 
First natural frequency 𝑓𝑓n1 1.08 Hz 
Second natural frequency 𝑓𝑓n2 2.16 Hz 
Third natural frequency 𝑓𝑓n3 3.25 Hz 

 

Method 

In order to compute the vibrations of flexible risers, the hydrodynamic forces acting on them 
must be obtained. To do this, the transient incompressible Reynolds-averaged Navier–Stokes 
equations are solved numerically, the SST 𝑘𝑘 − 𝜔𝜔 turbulence model is employed to determine 
the Reynolds stresses. Considering the large scale in the axial direction of the flow domain, 
two-dimensional flow fields located equidistantly along the span are solved instead of the 
entire three-dimensional flow field is not quite feasible. In this case, to solve. As Willden and 
Graham[8] has mentioned, though three-dimensional vortices might be developed when flow 
past a riser, an effect of lock-in actually maintain the locally two-dimensional property, 
making it possible for us to compute the fluid dynamics locally in a two-dimensional way. 
The hydrodynamic forces at other positions along the span can be interpolated accordingly. 
The PIMPLE algorithm in the OpenFOAM is used to compute the two-dimensional flow 
fields. 
 



The flexible riser is modeled as a small displacement Bernoulli–Euler bending beam, with 
two ends set as pinned. In the present work, the top end of the riser oscillates harmonically as 
prescribed. Thus, the beam’s total displacement is referred to as total displacement 𝑥𝑥t, i.e. the 
sum of the support motion 𝑥𝑥s, plus the relative displacement 𝑥𝑥: 
 
 𝑥𝑥t  =  𝑥𝑥s  +  𝑥𝑥.  (8) 
 
The equilibrium of forces for this system can be written as 
 
 𝑓𝑓I  + 𝑓𝑓D  +  𝑓𝑓S  =  𝑓𝑓H ,   (9) 
 
where 𝑓𝑓I, 𝑓𝑓D, 𝑓𝑓S, 𝑓𝑓H are the inertial, the damping, the spring, and the hydrodynamic forces, 
respectively. The force components can be expressed as 𝑓𝑓I = 𝑚𝑚�̈�𝑥t , 𝑓𝑓D = 𝑐𝑐�̇�𝑥 , 𝑓𝑓S = 𝑘𝑘𝑥𝑥 , where 
𝑚𝑚, 𝑐𝑐, 𝑘𝑘 are the mass, the damping and the stiffness of the system. We have 
 
 𝑚𝑚�̈�𝑥t + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑓𝑓H ,  (10) 
 𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑓𝑓H − 𝑚𝑚�̈�𝑥s .  (11) 
 
Thus there will be one additional contribution to the total forces from the point of view of the 
riser, the additional inertial force. In the finite element method the equations can be 
discretized as 
 
 𝐌𝐌�̈�𝐱 + 𝐂𝐂�̇�𝐱 + 𝐊𝐊𝐱𝐱 = 𝐅𝐅H𝑥𝑥 − 𝐌𝐌�̈�𝐱𝐬𝐬 , (12) 
 𝐌𝐌�̈�𝐲 + 𝐂𝐂�̇�𝐲 + 𝐊𝐊𝐲𝐲 = 𝐅𝐅H𝑦𝑦 −𝐌𝐌�̈�𝐲𝐬𝐬 , (13) 
 
where 𝐱𝐱, 𝐱𝐱𝐬𝐬, 𝐲𝐲, and 𝐲𝐲𝐬𝐬 are nodal displacement vectors, and 𝐌𝐌, 𝐂𝐂, 𝐊𝐊 are the mass, the damping 
and the stiffness matrices. The Rayleigh damping 𝐂𝐂 = 𝛼𝛼𝐌𝐌 + 𝛽𝛽𝐊𝐊 is adopted, where 𝛼𝛼 and 𝛽𝛽 
are calculated based on the natural frequencies of two mainly involved modes, with a 
damping ratio 𝜁𝜁 of 0.03. The equation can be written as 
 

 �
𝛼𝛼
𝛽𝛽� = 2𝜁𝜁

𝑓𝑓n𝑖𝑖+𝑓𝑓n𝑗𝑗
�
2π𝑓𝑓n𝑖𝑖𝑓𝑓n𝑗𝑗
1 (2π)⁄ � .   (14) 

 
𝐅𝐅H𝑥𝑥  and 𝐅𝐅H𝑦𝑦  are the hydrodynamic force vectors in corresponding directions (including 
hydrodynamic mass forces). The equations are solved using the Newmark-beta method [9].  
 
At the beginning of each time step the hydrodynamic forces are mapped to the structural 
model nodes. Then the displacements of the riser are computed. With the displacements 
obtained, the mesh can be moved or deformed accordingly, thus resulting in new flow fields 
from which the hydrodynamic forces can be gained. In this way, a time step is advanced. The 
procedure is shown in Figure 2, based on which the solver viv-FOAM-SJTU is formed. 
Twenty strips equidistantly located along the span of the riser are plotted in Figure 3. These 
strips share the same initial flow field mesh, as shown in Figure 4. The motion solver 
“displacementLaplacian” in OpenFOAM is applied to handle the dynamic mesh [10]. Imposed 
on the surface of the riser is the no-slip boundary, and no external current is applied. The riser 
is discretized into 80 elements, with each element imposed of uniformly distributed loads. 
 



 
Figure 1: Fluid-structure interaction. The fluid and the structure are coupled by hydrodynamic 
forces and structural deformations. 
 

 
Figure 2: Twenty strips located equidistantly along the span of the flexible riser.  
 

   
Figure 3: Initial mesh on each strip. The mesh near the riser is magnified. Eighty diameters in 
the in-line direction 𝑥𝑥, forty diameters in the cross-flow direction 𝑦𝑦. 
 



Table 2: Main parameters for simulation cases. Symbols 𝐾𝐾𝐾𝐾𝑥𝑥, 𝐾𝐾𝐾𝐾𝑦𝑦, 𝑈𝑈r max and 𝑉𝑉r max denote 
𝐾𝐾𝐾𝐾 numbers and reduced velocities at the top end of the riser in the in-line and cross-flow 

directions, 𝜓𝜓 being the phase difference between the excitation in two directions. 
 

Case 𝐾𝐾𝐾𝐾𝑥𝑥 𝐾𝐾𝐾𝐾𝑦𝑦 𝑈𝑈r max 𝑉𝑉r max 𝜓𝜓 
1 84 0 12 0 - 
2 84 21 12 6 0 
3 84 21 12 6 90 

 

Results 

Three cases considered in the present work are listed in Table 2. In Figure 4 are plotted the 
trajectories of them. When the riser is excited in two directions, the frequency of the cross-
flow excitation is set as twice that of the in-line excitation, thus forming ‘∞’-shaped or 
parabolic trajectories in Figure 4. An interesting ‘hat shaped trajectory (viewed from a 
reference frame which moves with the straight riser axis) is found in case 2. In case 2, risers 
move upwards in the cross-flow direction when passing the intersection (‘X’) parts of the ‘∞’ 
trajectories. Near the intersections are the high speed periods and consequently large drag 
forces, causing large deflections in the opposite directions. High speeds also mean more 
intense vibrations in the locally cross-flow direction, forming the lower ‘crab plier’ shaped 
parts. Thus the two ‘crab plier’-like parts in Figure 5 correspond to the ‘X’ parts in Figure 4 
while the top-end knots in Figure 5 correspond to two sides in Figure 4, the zero in-line 
excitation velocity periods. Since at two sides of ‘∞’ the riser is always moving downwards, 
causing the top-end knots in Figure 5 to move upwards. Though the trajectories in cases 1 and 
3  seem similar in Figure 4, i.e. of overlapping forward and backward routes, the curvature 
actually plays a subtle role in the vibrations, resulting in quite different results in Figs. 5-7. 
The constantly changing motion directions together with the wake effects render more 
complex flow situations and also larger deflections in case 3. 
 

 
Figure 4: Actual trajectories of the vibrations of the riser in cases 1 (left), 2 (middle), and 3 
(right) viewed from a fixed camera. 
 



 
Figure 5: Trajectories of the vibrations of the riser in cases 1 (left), 2 (middle), and 3 (right) 
viewed from a reference frame which moves with the straight riser axis. 

 

  

 
Figure 6: Time series of modal weights of the in-line displacements 𝑥𝑥 ⋅ 𝐷𝐷−1 in cases 1 (left), 2 
(middle), and 3 (right), 𝑤𝑤𝑥𝑥𝑚𝑚 ⋅ 𝐷𝐷−1. 

 



 

 

Figure 7: Time series of modal weights of the cross-flow displacements 𝑦𝑦 ⋅ 𝐷𝐷−1 in cases 1 
(left), 2 (middle), and 3 (right), 𝑤𝑤𝑦𝑦𝑚𝑚 ⋅ 𝐷𝐷−1. 

 
Time series of modal weights of the in-line and cross-flow displacements are presented in 
Figures 6 and 7, respectively. Modal decompositions are conducted in the least-squares 
sense[11,12]. The low-frequency components due to the current speed variation along the span 
appear in higher in-line modal weights in all cases. These also occur in the cross-flow 
direction in case 2 and 3, but the low frequency is twice of the in-line one, the same with the 
excitation frequency in the corresponding direction. It is clear from Figures 5-7 that the 
vibrations become more intense in both directions in case 3, especially in the in-line direction, 
indicating that the excitation in the other direction can enhance the vibrations when the riser 
has to cross its own wake. The pretty intense second modal weight of in-line displacement in 
case 2 can be explained as the component of actual ‘cross-flow’ vibrations in ‘x’ direction 
(still referred to as in-line direction). As a result, the second modal weight of cross-flow 
displacement become smaller compared to that in case 1. For case 2, the riser does not 
necessarily cross the wake, rendering less intense vibrations compared to case 1, in which the 
riser is excited in only one direction. Comparing results of case 2 and 3, it is safe to say that 
the almost same forward and backward trajectory, which ensures that the riser crosses the 
wake, greatly enhance the vibrations. 

Conclusions 

The vortex-induced vibrations of a flexible riser excited at the top-end in one and two 
directions have been numerically simulated. A CFD method based on the strip theory is used 
in the simulations. Three cases are considered, one with only one-direction excitation, one 
with ‘∞’-shaped excitation trajectory, and one with parabolic excitation trajectory. When the 
riser was excited in a parabolic trajectory, the vibrations in both directions are enhanced. 
However, vibrations can be reduced in the ‘∞’-shaped trajectory case, in which a ‘hat’-shaped 
trajectory has been observed (viewed from a reference frame which moves with the straight 
riser axis). The key factor is whether the riser would cross its own wake.  
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