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Abstract 
The kriging-based global optimization algorithm, Efficient Global Optimization (EGO), is 
applied to ship hull form design problems. The Kriging-based surrogate model is used to 
approximate the relationship between the design variables (input) and the objective functions 
(output) using a stochastic process. The kriging model drastically reduces the computational 
time required for objective function evaluation in the optimization(optimum searching) 
process. Expected improvement (EI) is used as a criterion to select additional sample points. 
This makes it possible not only to improve the accuracy of the surrogate model, but also to 
explore the global optimum efficiently. The present method is applied to five test functions 
and a ship hull form design, which makes the optimal hull form with the best resistance 
performance in calm water. It turns out that the EGO method is a good method for 
optimization design and can further extend to other ship hull form optimization design 
problems based on computational fluid dynamics. 

Keywords: kriging model; efficient global optimization; uncertainty; ship optimization 
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Introduction 

With the growth in computing power of current computers and the advances in computational 
techniques, today especially computational fluid dynamics (CFD) has become an invaluable 
tool for ship hull form optimization design. However, in the process of optimization design, 
the number of objective function evaluations using high-fidelity numerical analysis solvers, is 
severely limited by time and cost, even with current supercomputers. 
 
One alternative is to construct a simple surrogate model instead of the complicated numerical 
analysis. The surrogate model expresses the relationship between the design variables (input) 
and the objective functions (output) using a stochastic Gaussian process. The model requires 
very little time to evaluate the objective function. It enables designers to greatly save 
computational cost. The most widely used surrogate model are the polynomial-based model, 
the response surface model, the kriging model and so on. 
 
The kriging model (Wu J. W., 2017) has gained popularity for the engineering optimization 
design, recently. The model predicts the value of the unknown point using stochastic 
processes. The model has sufficient flexibility to represent the nonlinear and multimodal 
functions at the expense of computation time. However, the computation time to construct the 
kriging model is still short compared to that of direct high-fidelity numerical analysis. 
 



However, the traditional optimization algorithms, like genetic algorithm (GA), differential 
evolution (DE), require many objective function evaluations, which may be impractical if we 
rely solely on the time-consuming high-fidelity numerical analysis solver. Here, the time-
consuming numerical analysis solver in the objective function evaluation process of 
optimization is replaced with the kriging model. However, that it is possible to miss the global 
optimum in the searching space if we rely only on the prediction value of the kriging model 
because the model includes uncertainty at the prediction point. For robust exploration of the 
global optimum point, both the prediction value and its uncertainty should be considered at 
the same time. This concept is expressed in the criterion expected improvement (EI). EI 
includes the probability of a point being optimum in the design space. By the selection of the 
best EI point as the additional sample point, improvement of the model and robust exploration 
of the global optimum can be achieved at the same time, which is called Efficient Global 
Optimization (EGO) (Jones D. R., 1998; Jeong S., 2015). 
 
In this paper, differential evolution (DE) algorithm is adopted as the searching algorithm to 
find maximum value of the EI function. DE is similar to genetic algorithm. However, 
compared with other evolutionary algorithms, DE retains the population-based global search 
strategy, which reduces the complexity of genetic operation by using real number coding, 
simple mutation based on difference and one-to-one competitive survival strategy. At the 
same time, DE's unique memory ability makes it possible to dynamically track the current 
search situation to adjust its search strategy, which has strong global convergence ability and 
robustness, and does not need to use the characteristic information of the problem. DE is 
suitable for solving the optimization problem in complex environment that the mathematical 
programming method may not solve. 
 
In the first half of this paper, the EGO method will be briefly introduced back to the Kriging 
modelling. In the second of this paper, the method will be applied to the optimization 
problems of the test functions and ship design of Wigley. 

Kriging Model 

Kriging model (Simpson et al., 1994, 2004) is developed from mining and geostatistical 
applications involving spatially and temporally correlated data. This model combines a global 
model and a local component: 

( ) ( ) ( )y x f x z x= +                                                                (1) 
where ( )y x is the unknown function of interest, ( )f x  is a known approximation function of x , 
and ( )z x  is the realization of a stochastic process with mean zero, variance 2σ , and non-zero 
covariance. With ( )f x  and ( )z x , the kriging model can build the surrogate model between the 
input variables and output variables. 
The kriging predictor is given by: 

( ) ( )T 1ˆ ˆˆ r R y fy xβ β−= + −
                                                          (2) 

where y  is an ns-dimensional vector that contains the sample values of the response; f  is a 

column vector of length sn  that is filled with ones when f  is taken as a constant; ( )Tr x  is the 
correlation vector of length sn  between an untried x  and the sampled data 

points
( ) ( ) ( ){ }1 2, , , snx x x2  and is expressed as: 
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                                                (3) 
Additionally, the Gaussian correlation function is employed in this work: 
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In equation (2), β̂  is estimated using equation (5): 

( ) 1T 1 T 1ˆ f f f yR Rβ
−− −=                                                                 (5) 

The estimate of the variance 2σ̂ , between the underlying global model β̂  and y  is estimated 
using equation (6):  

( ) ( )2 1ˆ ˆˆ
T

sy f R y f nσ β β− = − −                                                            (6) 
where ( )f x  is assumed to be the constant β̂ . The maximum likelihood estimates for the kθ  in 
equation (4) used to fit a kriging model are obtained by solving equation (7): 
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where both 2σ̂  and R  are functions of kθ . While any value for the kθ  create an interpolative 
kriging model, the “best” kriging model is found by solving the k-dimensional unconstrained, 
nonlinear, optimization problem given by equation (7). 
 
The accuracy of the prediction value largely depends on the distance from sample points. 
Intuitively speaking, the closer point x to the sample point, the more accurate is the prediction 
ŷ . This intuition is expressed as 
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where ( )2s x  is the mean squared error of the predictor and it indicates the uncertainty at the 

estimation point. The root mean squared error (RSME) is expressed as 
2 ( )s s x=  . 

 DE algorithm 

DE algorithm (Storn R., 1997) is mainly used to solve the global optimization problem of 
continuous variables. The main working steps are basically the same as other evolutionary 
algorithms, including Mutation, Crossover and Selection. The basic idea of the algorithm is to 
start from a randomly generated initial population and use the difference vector of two 
individuals randomly selected from the population as the random variation source of the third 
individual, and weight the difference vector and according to certain rules plus the third 
individual to produce a variation of individuals, which are called mutations. Then, the 
mutated individuals are mixed with a predetermined target individual to generate the test one. 
This process is called crossover. If the fitness value of the test individual is superior to the 
fitness value of the target individual, the test individual replaces the target individual in the 
next generation, otherwise the target individual is still saved, which is called the selection. In 
each evolutionary process, each individual vector is taken as the target individual once. The 
algorithm keeps the good individual and removes the poor individual through the iterative 
calculation, and the search process is approached to the global optimal solution. Here we use 
the DE algorithm to maximize the EI value. 

A kriging-based global efficient optimization algorithm 

Traditionally, once the surrogate model is constructed, the optimum point can be explored 
using an arbitrary optimizer on the model. However, it is possible to miss the global optimum 
because the approximation model includes uncertainty at the predicted point. 



 
In Fig. 1, the solid line is the real shape of objective function. Eight points are selected to 
construct the kriging model, which is shown as red points. The minimum point on the kriging 
model is located near x=16, whereas, the real global minimum of the objective function is 
situated near x=17. Searching for the global minimum using the present kriging model will 
not result in the real global minimum near x=17. For a robust search of the global optimum, 
both the predicted value by the kriging model and its uncertainty should be considered at the 
same time. 
 

 
Figure 1.  The Kriging model and the real function curve 

 
When Kriging model is built, the mean predicted value and the standard error of the kriging 
model at any point can be evaluated. Considering the uncertainty of the model, this concept is 
expressed in the criterion of EI. The EI of minimization problem can be calculated as 

[ ] [ ] [ ]min min minˆ ˆ ˆ( ) ( ) ( ) / ( ) /E I x f y f y s s f y sf= − Φ − + −                                    (9) 

Where  minf  is the minimum value among n sampled values. Φ  and f are the standard 
distribution and normal density, respectively.  
In fact, if we compute the derivative of EI as given in equation (9) with respect to ŷ  and s , 
we gets several terms that cancel, resulting in the simple following expressions: 

ˆ/ 0, / 0EI y EI s∂ ∂ < ∂ ∂ <                                                       (10) 

It turns out that EI is monotonic in ŷ  and in s . Thus, we see that the EI is larger the lower is 
ŷ  and the higher is s . By selecting the maximum EI point as additional sample point through 
DE algorithm mentioned above, robust exploration of the global optimum and improvement 
of the model can be achieved simultaneously. 
 
The overview over the whole efficient global optimization (EGO) procedure mentioned 
before is shown in Figure 2. First, the initial sample points should be chosen by experiment of 
design uniformly covering the whole design space. Secondly, an ordinary Kriging model is 
built and used to predict the objective for each design variable. Thirdly, the expected 
improvement (EI) balancing between regions of the low mean prediction and of high standard 
error is constructed to select the next point. The choice of the next sample point is the 
maximization of the EI value. Next, the objective function in the new point is calculated 
accurately and used to build a new surrogate model with the initial sample points, thus the 



next iteration is initiated. Finally, when the EI value is very small after   n iterations, i.e., 
( ) ( ) ( )( )max max minEI s y y< ∆ ⋅ −  , where s∆  is the relative stopping tolerance, or reach the 

maximization of iteration steps, the loop should be stopped. 
 

 

 

 

 

Figure 2.  The flow chart of efficient global optimization: on the left, the steps are briefly 
described; on the right, an example is given (predetermined design points as red dots, 
the added new points as green squares and the next new point as a blue triangle).  

 

Applications 

Application of the test functions 

we now apply this method EGO to five test functions, from a literature (Dixon L.C.W. and 
Szego G. P., 1978): Six-hump camel-back function, the Branin function, the Goldstein-Price 
function, the Hartman 3 function and the Hartman 6 function. The dimensions of these test 
functions are 2, 2, 2, 3 and 6, respectively. The results of the test functions by the EGO 
algorithm is shown in table. 
 
For each function, we report the number of evaluations to meet stopping criterion, and report 
the actual relative error on convergence. 
 
Table 1. Test function results by the EGO method 

Function Name Dimension 

Evaluations 
to meet 
stopping 
criterion 

Optimal result 
by EGO 

Real 
optimal 
value 

Relative 
error 

Six-hump 2 30 -1.0259 -1.03163 -0.56% 



Branin 2 30 0.39985 0.398 0.46% 
Goldstein-Price 2 31 3.00326 3 0.11% 

Hartman 3 3 35 -3.83 -3.86 -0.78% 
Hartman 6 6 84 -3.25503 -3.32 -1.96% 

 
As we can see, the results of the former four test functions achieve less than an actual relative 
error of 1%. For the Hartman 6 function, the actual relative error on convergence is slightly 
greater. Possibly, it is caused by the unknown but estimated correlation parameters. As a 
results, the standard error may be a bit too small, causing us to underestimate EI value. 

Application of ship optimization design of Wigley 

In this study, the EGO method was applied to ship hull form design and the optimization of 
the resistance performance in calm water. 

, 0.3obj wf C Fr= =                                                             (11) 

The design problem is to minimize the wave-making resistance coefficient of Wigley at the 
design speed. The Radial Basis Function (RBF) method (De Boer A., 2007) was applied to 
modify ship hull form. The design variables are parameters closely related to ship hull form 
modification. The total 7 design variables in table 2 are used to define the geometry of ship 
hull form. The upper and lower bound of each parameter is determined to avoid unrealistic 
ship hull geometry. 

 
Figure 3.  The control points distributed on Wigley hull by RBF method 

 

Table 2. The design variables and their ranges 

Design variables Deformation direction The bound 

1# x [-0.0025, 0.0025] 

2# x [-0.0025, 0.0025] 

3# x [-0.0025, 0.0025] 

4# y [-0.0025, 0.0025] 

5# y [-0.0025, 0.0025] 

6# y [-0.0025, 0.0025] 

7# y [-0.0025, 0.0025] 

At the early stage of optimization design, 35 sample points are spread over the design space 
and selected by Optimal Latin Hypercube Sampling (OLHS) to obtain a kriging model (Park 



J. S., 1994). In this study, OLHS has the beneficial property of orthogonality and uniformity 
in the multidimensional design space. The number of sample points is very important to keep 
the kriging model accurate in the traditional optimization process. however in the present 
kriging model, additional sample points will be added later in the region where the accuracy is 
not good enough, based on EI evaluation. The wave-making resistance coefficients of 35 
sample hull form and additional sample points are all evaluated using a potential flow theory, 
Nuemann-Michell method (Noblesse  F., 2013;  Liu, X. Y., 2016; Wu, J. W., 2016). 

After efficient global optimization search, The total number of sample points reached 45, after 
adding 10 more sample points. The objective function converges to the minimum value, 
1.046E-03, a larger reduction of 18.46% than the initial value. the summary of the relative 
parameters of EGO method is shown in table. And The design values of the optimal hull form 
is shown in Table 4. 

 

 
Figure 4.  The initial sample hulls and the additional new hulls used in the EGO method 

 

Table 3. The parameters of the EGO method 

The initial number of sample points 35 The additional number of sample points 10 

The number of iterations 10 Optimization time (h) 1.075h 

Node number 1 
  

 

Table 4. The values of design variables and the optimal solution of the objective function 
after optimization procedure 

Modification method Design variables Convergence value 

RBF method 

1# 0.002297 

2# -0.002346 

3# -0.002450 



4# -0.00250 

5# -0.00250 

6# -0.00250 

7# -0.00250 

The initial objective function value 1.618×10-3 

The convergent objective function value 1.046×10-3 

 

The following figures depict the comparisons of body lines and shapes of the initial Wigley 
and the optimal ship. The optimal hull form is thinner than the initial one globally. Another 
apparently different region is the fore part of the hull. The optimal hull is changed like ‘s’ 
curve, indent near the bottom and convex close to the top part. 
 

  

 

Figure 5.  Comparisons of the body lines and shapes between the initial hull and the 
optimal one 

 
Figure 6.  Comparison of free surface elevation between the initial hull and the optimal 
one 



 
Figure 6 is the wave profile of free surface of the two ships. In contrast, the optimal hull by 
EGO method generates lower wave than the initial one obviously, thus leads to the reduction 
of the wave-making resistance of the optimal hull. Also comparing the pressure distribution of 
the two ships in Fig. 7, the fore part of the optimal hull is with lower pressure than the initial 
one. Figure 8 shows the wave-making resistance coefficients of the two ships at a series of 
speeds, which makes it clear that the optimal ship has a lower wave-making resistance 
coefficient than the initial ship at certain range of speeds. This results validate that our 
optimization design in this study is robust. 

 
Figure 7.  Comparison of pressure distribution between the initial hull and the optimal 
one 

 
Figure 8.  The wave-making resistance coefficients of the best variation at a series of 
speeds 

Conclusions 

This paper presents a Kriging-based global optimization method, efficient global optimization 
(EGO), different from the ordinary optimization method. It combines the surrogate modeling 
with the optimization algorithm. By this method, not only the accuracy of surrogate model is 
continuously improved but also the solution of the optimization problem keeps searched in 
the iterative procedure. The method is successfully applied to the test functions and ship hull 
form optimization design. The results demonstrate the usability of the method in ship hull 
form optimization design. In the future, it will be used to the more ship optimization problem, 
such as the ship hull form design to improve comprehensive hydrodynamic performance, 
based on entire CFD. 
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