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Abstract 
In this paper, the application of a GPU-based particle method to three-dimensional sloshing 
problem is presented. Moving particle semi-implicit (MPS) method is a Lagrangian method 
which can be used to simulate nonlinear flow effectively. But one of its drawbacks is the high 
computation cost with the increase of particle number. Based on modified MPS, the MPS-
GPU-SJTU solver is developed to simulate a large sum of particles by using GPU which 
supports large-scale scientific computations. In addition, one optimization strategy is applied 
to reduce the storage and computation cost of Poisson equation of pressure (PPE). Then the 
convergent validation is carried out to verify the accuracy of present solver. And the accuracy 
and performance of GPU-based solver are investigated by comparing the results with those by 
CPU. As a summary of results, the GPU-based solver shows a good agreement with CPU 
solver (MLParticle-SJTU). And the computation efficiency of GPU is much higher than CPU. 

Keywords: Moving particle semi-implicit (MPS); GPU acceleration; MPS-GPU-SJTU solver; 
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Introduction 

With the development of economy, the demand of energy is increasing. Many countries which 
lack energy import liquefied natural gas, oil and liquefied petroleum gas by the transportation 
of vessels such as LNG, LPG, VLCC and so on. Because of the variable sea conditions, the 
liquid in a partially filled tank will be prone to complicated and nonlinear sloshing 
phenomenon. The instantaneous impact pressure induced by liquid sloshing may destroy the 
structure of tank walls and the stability of the ship. Therefore, many researchers have devoted 
themselves to investigating the characters and mechanisms of sloshing. 
 
Faltisnen (1978) developed the boundary element method (BEM) to study sloshing in a two-
dimensional (2-D) rectangular tank under translational excitation [1]. Nakayama and Washizu 
(1980) used the finite element method (FEM) to study 2-D problem of nonlinear liquid 
sloshing in a rectangular tank under pitch excitation [2]. Arai et al. (1992) used the Marker-
and-cell (MAC) method to simulate numerically a 3-D sloshing phenomenon in liquid tank 
with vertical baffle [3]. Koh et al. (1998) developed a coupled BEM-FEM method for 
analyzing 3-D liquid sloshing in rectangular tanks [4]. Kim (2001) studied 2-D and 3-D 
sloshing in a rectangular tank with a large vertical baffle and three horizontal baffles by using 
the finite difference method (FDM) [5]. Liu and Lin (2009) modeled the vertical baffle in 2-D 
and 3-D tank by the virtual boundary force (VBF) method [6]. Yin et al. (2012) employed the 
volume of fluid (VOF) method by utilizing their inhouse solver naoe-FOAM-SJTU to study 
the effect of filling rate on sloshing [7]. 
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In addition to the above methods, the fully Lagrangian particle methods are used to research 
the nonlinear sloshing problem. Delorme et al. (2009) applied the smoothed particle 
hydrodynamics (SPH) method to research the impact pressure of sloshing in shallow filled 
tank under roll excitation [8]. Shao et al. (2012) simulated 2-D liquid sloshing by using SPH 
[9]. Koh et al. (2013) used the consistent particle method (CPM) to investigate the effect of a 
constrained floating baffle in prismatic tank [10]. Kim et al. (2014) developed MPS method to 
research multiliquid-layer sloshing problems and investigated the elevation of interface under 
different excited frequencies and amplitudes [11]. Yang et al. (2015) studied the effects of 
excitation period on 2-D liquid sloshing by MPS Method [12]. Hashimoto et al. (2016) 
estimated oil overflow from an oil storage tank subjected to a possible Nankai trough 
earthquake in Osaka bay area based explicit MPS method [13]. Zhou et al. (2016) modified 
the pressure correction algorithm and simulated the sloshing of multiphase flows with large 
density ratio [14]. Chen et al. (2016) used modified MPS method to study the effect of the 
location of horizontal baffle on liquid sloshing in 3-D tank [15]. 
 
Though mesh-free methods can easily track free surface and effectively simulate sloshing 
problem, they still suffer from high computation cost with the increase of particle number. 
The GPU (Graphics Processing Unit) is a multi-processor designed to optimize for the 
execution of massive number of threads. Because of the explicit algorithm, it is easy to apply 
GPU technology to SPH. Harada et al. (2007) applied the acceleration technique of GPU to 
SPH and the computation speed of GPU is up to 28 times faster than CPU [16]. Hérault et al. 
(2010) used CUDA to implement SPH on GPU to simulate the problems of dam break and 
paddle-generated waves [17]. Crespo et al. (2011) developed a CPU-GPU solver 
DualSPHysics to deal with free-surface flow problems and achieved a speedup of 64 in the 
simulation of 3-D dam break by using one million particles [18]. Domínguez et al. (2013) 
improved DualSPHysics by using several optimizations for the GPU implementations and 
accelerated serial SPH codes with a speedup of 56.2 [19]. Fourtakas and Rogers (2016) 
applied a two-phase model based on SPH to simulate the problem of two-phase liquid-
sediments flows [20]. However, it is difficult to implement a GPU-based MPS calculation due 
to the semi-implicit algorithm adopted to obtain the pressure field. Hori et al. (2011) 
developed a GPU-accelerated MPS code by using CUDA language and simulated 2-D 
elliptical drop evolution and dam break [21]. Kakuda et al. (2012, 2013) presented a GPU-
based MPS to calculate 2-D and 3-D dam break problems compared with CPU simulations 
and the speed-up is 12 times and 17 times respectively [22]. Li et al. (2015) applied GPU 
acceleration in the solution of PPE and search of neighboring particles and achieved speedups 
of 10 and 6 respectively [23]. Gou et al. (2016) simulated the isothermal multi-phase fuel-
coolant interaction by using MPS method with GPU acceleration [24]. 
 
In this study, the MPS-GPU-SJTU solver based on modified MPS method is employed for 
numerical simulation of 3-D liquid sloshing by using GPU acceleration. In the first section, a 
brief description of MPS method is presented. In the second section, the flow chart of 
implementations on GPU follows. Then one optimization strategy to reduce the storage and 
computation time of PPE is applied and improves the computation efficiency. In addition, the 
convergent validation is carried out to verify the accuracy of present solver. And the 3-D 
sloshing problems are simulated by GPU and CPU solvers at the same time. It is shown that 
the results of GPU solver show a good agreement with CPU and a large amount of 
computation time is reduced by GPU.  
 



MPS Method 

Koshizuka and Oka (1996) have explained the MPS method in detail [25]. In this section, the 
numerical models adopted in this paper are introduced briefly. 
 

Governing Equations 

The governing equations for incompressible and viscous fluid include conservation equations 
of mass and momentum. 
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where ρ is the fluid density, t is the time, V
  is the velocity vector, P  is the pressure, ν is the 

kinematic viscosity and g  is the gravitational acceleration vector. 
 

Particle Interaction Models 

Kernel Function 

A kernel function is used for all interaction models to describe the particle interaction in MPS 
method. 
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where r is the distance between two particles and re is the radius of the particle interaction. 
The particle number density and gradient model is re=2.1l0, while re=4.0l0 is used for the 
Laplacian model, where l0 is the initial distance between two adjacent particles. 
 

Gradient Model 

The gradient operator is modeled as a local weighted average of the gradient vectors between 
particle i and its neighboring particle j. 
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where D is the number of space dimension, n0 is the initial particle number density and r  is 
coordinate vector of fluid particle. 
 

Laplacian Model 

The Laplacian operator is modeled by weighted average of the distribution of a quantity φ  
from particle i to its neighboring particle j. 
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where λ is applied to make sure that the increase of variance is equal to the analytical 
solution. 
 

Model of Incompressibility 

In this paper, PPE is solved by using a mixed source term method which is developed by Lee 
et al. (2011) [26]. 
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where γ is a blending parameter which varies from 0 to 1, n* is the temporal particle number 
density and Δt is the time step. In this paper, γ =0.01 is employed for all numerical 
simulations. 
 

Free Surface Detection 

Zhang (2012) developed a modified surface particle detection method, which is based on the 
asymmetry arrangement of neighboring particles [27]. 
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where F

  is a vector which represents the asymmetry of arrangements of neighbor particles, 
0

F
  is the initial value of F

 . 

 
Boundary Condition 

For MPS, multilayer particles are used to present the wall boundary. The wall particles are 
arranged at the boundary and the pressures of them are solved by PPE. Two layers of ghost 
particles are configured to fulfill the particle number density near the boundary so that the 
particle interaction can be properly simulated near the boundary. The pressure of ghost 
particle is obtained by interpolation. 
 

Liquid Particle

Wall Particle

Ghost Particle

Wall

 
Figure 1. Schematic of boundary particles 

 

Implementations on GPU 

It is very important to reduce the CPU cost of MPS with the high-efficient parallelization. As 
shown in Figure 2, GPU is designed to possess more calculation threads to process data 



simultaneously. For example, when one thousand particles are simulated, one thousand 
threads are launched to calculate. The function of CPU is only to conduct GPU codes to 
implement and communicate data between GPU. Therefore, GPU is a better choice for high 
parallel MPS method. 
 

 
Figure 2. The frameworks of CPU and GPU 

 
For MPS, the time integration is mainly composed of two steps. One step is an explicit 
calculation considering the gravity and viscosity terms. Another step corresponds to an 
implicit calculation of PPE. The computational flow chart of MPS on GPU is shown in Figure 
3. Except the exchange of data between GPU and CPU, the GPU implementation mainly 
consists of six steps: 
1) Search neighboring particles and create neighbor list 
2) Explicit calculation (gravity and viscosity terms) 
3) Calculate particle number density and detect free surface 
4) Solve PPE to obtain pressure field 
5) Calculate pressure gradient 
6) Update velocities and positions of particles 
 

 
Figure 3. The flow chart of MPS on GPU 

 

Simulation and Result 

In this section, a 3-D liquid tank same as the experimental model given by Kim (2001) is 
selected as the numerical model to simulate. The geometry of liquid tank is shown in Figure 4. 
The dimensions of tank are 0.8 m (L), 0.35 m (B) and 0.5 m (H), respectively. The depth of 
water (D) is 0.25 m, corresponding filling level is 50%. The liquid tank is subject to move by 
the external surge excitation: 

( )sinx A tω= ⋅ ⋅                                                           (11) 
where A is the amplitude of excitation set to be 0.02 m and the excitation frequency ω is 5.39 
rad/s which is same as the first natural period of fluid motion in the tank. In addition, two 
pressure probes are arranged on lateral wall to measure the variation of pressure. The 
arrangements of pressure probes are listed in Table 1. 
 



    
Figure 4. The sketch of numerical model 

 
Table 1. Arrangements of pressure probe 

 X/m Y/m Z/m 
P1 -0.4 0 0.0525 
P2 -0.4 0 0.115 
 
All simulations are performed on parallel high performance computing (HPC) with multi 
cores of Intel(R) Xeon(R) E5-2680 v2, 2.80 GHz. And the GPU device is NVIDIA graphics 
card Tesla K40M, which has 2880 CUDA cores with 12GB graphics memory. Table 2 shows 
the parameters of computing devices. In this paper, the double precision floating point 
computation is only used in both CPU and GPU codes. 
 

Table 2. Computational environment of CPU and CPU 
 HPC GPU 
Card Intel(R) Xeon(R) E5-2680 v2, 2.80 GHz Tesla K40M 
Memory DDR3 1600, 16GB 12GB 
Core 10 2880 
Compiler gcc, MVAPICH CUDA 7.0, CULA Sparse S6 
 

PPE Optimization 

It is well known that the most computation time of MPS is consumed to solve PPE which can 
be discretized into a linear system Ax=b. Eq. 12 shows the discretization of linear system. 
The coefficient matrix of PPE, A is a typical sparse matrix. In order to reduce the storage of 
matrix A, the compressed sparse row (CSR) data format is employed. Moreover, the 
Biconjugate gradient stabilized (BiCGSTAB) method is applied to solve this linear system 
based on CSR format. Nevertheless, the pressure of ghost particles and free surface particles 
is no need to solve in PPE and set to zero as the boundary condition. For example, if particle i 
is ghost particle or surface particle, the relevant row of matrix A and array B will be set to 
constant in Eq. 13. Here, Thrust is a C++ template library for CUDA which provides a rich 
collection of data parallel primitives such as scan, sort, and reduce [28]. In order to reduce the 
iteration time and storage of PPE, the relevant rows and columns of ghost and free surface 
particles are removed from the linear system by using Thrust. Therefore, the matrix 
dimensions of A, x and b can be reduced in Eq. 14 and the iteration speed of PPE will be 
faster. The sparse linear algebra library of CULA-Sparse is utilized for accelerating the 
iteration of PPE [29]. 
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The comparison of computation time between original and optimized PPE is conducted in this 
sub-section. Total 750793 particles are used to model the liquid tank. The simulation model 
includes 144812 ghost particles and uncertain free surface particles which are filtered after 
free surface detection at each step. Figure 5 shows the comparison of pressure history between 
original and optimized PPE. The overall trends of pressure are almost same for two cases. The 
relative errors of average pressure peak on both P1 and P2 are small. The calculation time of 
every step is shown in Figure 6. For optimized PPE, the time cost of solving PPE is about 7% 
smaller than original PPE. With the increase of ghost and free surface particles, the optimized 
PPE may reduce more computation time. The concrete results are listed in Table 3. 
 

Table 3. The results of original and optimized PPE 

PPE Type Pressure Peak 
of P1 (Pa) 

Relative 
error 

Pressure Peak 
of P2 (Pa) 

Relative 
error 

Computation time 
of PPE (s) 

Original 3166 - 2630 - 3.101 
Optimized 3180 0.44% 2639 0.34% 2.877 

 
 



 
Figure 5. The pressure histories of original and optimized PPE 

 

 
Figure 6. The computation times of original and optimized PPE 

 

Convergence verification 

In this sub-section, the convergence verification is conducted to investigate the effect of 
particle spacing on the numerical results. Three different spatial resolutions (0.006 m, 0.005 m, 
0.004 m) are employed to check the convergence of numerical results. The pressure variations 
of different spatial resolutions are shown in Figure 7. The average values of pressure peak are 
listed to check the convergence of three cases quantitatively in Table 4. For three spatial 
resolutions, the variation tendency of pressure is almost same. Furthermore, the relative error 
is so tiny that the results are convergent with respect to the spatial resolution. In addition, the 
computation times of different spatial resolution are compared in Figure 8. For every step, the 
computation time of medium resolution is 1.888 times than coarse resolution. And every step 
of fine resolution is about 7.086 s which is almost twice than medium resolution. Considering 
the computation time and accuracy, the medium spatial resolution is selected in following 
sections. 
 

Table 4. The pressure peaks of different spatial resolutions 

Spatial 
resolution 

Particle 
spacing 

(m) 

Particle 
number 

Pressure 
Peak of P1 

(Pa) 

Relative 
error 

Pressure 
Peak of P2 

(Pa) 

Relative 
error 

Coarse 0.006 456588 3156 - 2630 - 
Medium 0.005 750793 3180 0.76% 2639 0.34% 

Fine 0.004 1390732 3224 1.35% 2647 0.30% 



 

 
Figure 7. The pressure histories of different spatial resolutions 

 

 
Figure 8. The computation times of different spatial resolutions 

 

3-D Sloshing 

In this sub-section, there are some comparisons between CPU and GPU including simulation 
results, computation time and so on. Figure 9 shows some snapshots of numerical flow field. 
The nonlinear deformation and large fragmentation of free surface can be observed. The 
numerical flow field of GPU is in good agreement with CPU simulation. Many details of flow 
field such as overturning wave, local splashing and travelling wave are clearly captured. The 
flow of fluid is opposite to the movement of liquid tank. The tank moves to the left lateral 
wall while fluid flows to right. Therefore, the fluid runs up along lateral wall and impacts the 
ceiling of the tank. Then fluid spreads along the roof and drops down under the action of 
gravity. In this process, a part of water even splashes on the right side wall. Then the sloshing 
wave travels to the left side wall. 
 
CPU 10cores 

 
t ≈ 15.35 s 

 
t ≈ 15.45 s 

 
t ≈ 15.55 s 



 
t ≈ 15.7 s 

 
t ≈ 15.8 s 

 
t ≈ 15.9 s 

 
GPU 

 
t ≈ 15.35 s 

 
t ≈ 15.45 s 

 
t ≈ 15.55 s 

 
t ≈ 15.7 s 

 
t ≈ 15.8 s 

 
t ≈ 15.9 s 

 
Figure 9. The flow fields of CPU and GPU 

 
In addition, the numerical pressure histories of CPU and GPU are shown in Figure 10. The 
pressures of GPU simulation on two probes show a good congruency with CPU results. Two 
successive pressure peaks in each period can be observed. Because of the phase difference 
between fluid and tank, the sloshing wave that impacts on lateral wall induces the first 
pressure peak. Then the pressure decreases when fluid runs up along lateral wall. And the 
second pressure peak results from the fallen water which spreads along the roof and drops 
down on the free surface. Figure 11 shows the spectrum analysis of GPU results. When 
frequency is 0 Hz, the spectrum amplitudes of P1 and P2 are similar to hydrostatic pressure. 
When the frequency is same as excitation frequency, a peak of spectrum amplitude explains 
the first successive pressure peak. As frequency is twice as excitation frequency, there is the 
second peak of spectrum amplitude corresponding to the second pressure peak in pressure 
history. 
 



 
Figure 10. The pressure histories of CPU and GPU 

 

 
Figure 11. Spectrum of numerical pressures 

 
In this paper, various schemes of multi cores are implemented to run CPU code on HPC. 
Figure 12 shows the computation times on CPU and GPU devices. The specific computation 
time of every step is listed in Table 5. No matter CPU and GPU, solving PPE is the most cost 
for calculation. From Figure 12, the total time decreases with the increase of CPU cores. 
Comparing GPU and CPU one core, the speedups of PPE and total time are 25.22 and 24.05, 
respectively. Therefore, how to solve PPE quickly is the greatest problem for researchers. 

 
Table 5. The computation times of CPU and GPU 

 CPU 
1core 

CPU 
2cores 

CPU 
4cores 

CPU 
6cores 

CPU 
8cores 

CPU 
10cores GPU 

PPE 72.562 40.167 25.398 20.667 17.892 16.607 2.877 
Other 6.011 3.416 1.872 1.592 1.404 1.424 0.390 
Total 78.573 43.584 27.270 22.259 19.295 18.032 3.267 

 



 
Figure 12. The computation times of CPU and GPU 

 

 
Figure 13. The speedup by GPU 

 

Conclusions 

In this paper, the MPS-GPU-SJTU solver based on modified MPS is developed to simulate 3-
D sloshing problem by applying GPU acceleration technique. By reducing the dimensions of 
matric and arrays, the computation efficiency of solving PPE is improved. The convergence 
verification is conducted to prove the stability of GPU solver. In addition, the results of GPU 
show a good agreement with CPU. The computation time of GPU solver is much smaller than 
CPU and the speedup of every time iteration is up to 24. 
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