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Abstract 

Meshfree methods such as the element-free Galerkin (EFG) method have been developed to 
be a formidable competitor and also a beneficial complement to the traditional finite element 
method (FEM) which dominates engineering analysis for decades. One attractive advantage 
of meshfree methods is that constructing high order approximation is much more convenient 
than that in the finite element method (FEM). However, high order meshfree methods are 
computationally inefficient since a large number of integration points are required. On the 
other hand, the stabilized conforming nodal integration method based on strain smoothing is 
very efficient for linear meshfree Galerkin methods, but it cannot exploit the high 
convergence and accuracy of meshfree methods with high order approximation. In this work, 
the number of quadrature points for high order meshfree methods is remarkably reduced by 
correcting the nodal derivatives. Such correction is rationally developed based on the Hu-
Washizu three-field variational principle. The proposed method is able to exactly pass patch 
tests in a consistent manner and is therefore, named as consistent high order meshfree 
Galerkin methods. In contrast, the traditional meshfree methods cannot exactly pass patch 
tests. Numerical results of elastostatic problems show that the proposed technique remarkably 
improves the numerical performance of high order meshfree methods in terms of accuracy, 
convergence, efficiency and stability. Applications of the proposed methods to thin plates and 
shells as well as crack problems are also presented. 
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Introduction 

Meshfree methods[1-6] such as the element-free Galerkin (EFG) method developed in recent 
twenty years have become a formidable competitor to the traditional finite element method 
(FEM) which dominates engineering analysis for decades. The common feature shared by the 
so called “meshfree” or “meshless” methods is that they are based on scattered data 
approximation which do not need explicit nodal connectivity(element). So far, EFG is one of 
the most popular and successful meshfree methods. Its fundamental advantage against 
traditional FEM is the smoothness of the approximation function. With careful choice of the 
weight function for the MLS process, the continuity of the approximation function can be C   
which provides superiority for solving high order partial differential equation such as thin 
plates and shells whereas the continuity of the FEM approximation is only 0C . Furthermore, 
high order approximation can be conveniently obtained in EFG. The required change in the 
input data is minimum. In contrast, in FEM, high order elements such as 6-node or 10-node 
triangle elements have to be constructed and this changes the input data a lot. Finally, EFG is 
easy to achieve h-adaptive computation[7] since its approximation is only based on nodes (not 
elements). 
However, a main issue of the EFG method (or more generally the meshfree methods) is the 
efficient numerical integration of the weak form. Background meshes with Gauss integration 
points are commonly used in EFG. Due to the non-polynomial character of the MLS 
approximants, high order Gauss integration has to be employed to result a stable method. 
Clearly, the large number of integration points consumes more CPU time and thus severely 
impairs the computational efficiency. What’s worse is that even the high order integration 
cannot integrate the weak form accurately enough to make the method exactly pass the patch 
test.  
Many efforts have been devoted to develop stable and efficient integration methods with 
reduced number of sampling points such as the nodal integration [8-10], the stress-point 



integration [11-12], the support domain integration [13], etc. Among these, the nodal 
integration initiated by Bessial and Belytschko [8] can dramatically improve the efficiency 
since it uses the minimum evaluating points (the nodes) as integration points. However, direct 
nodal integration is not stable and can’t pass the patch tests, some works have been done to 
relieve this issue [10-15]. Among these, Chen et al. [14] developed a stabilized conforming 
nodal integration (SCNI) which is stable and provides even better accuracy than Gauss 
integration. They showed that SCNI can pass the linear patch test whereas Gauss integration 
fails. One outstanding merit of this method is that no additional term or stabilization 
parameter is involved. So far, SCNI has developed to be a major integration scheme in 
meshfree method and the strain smoothing technique in SCNI has been extend into FEM 
analysis [16]. 
However, Puso et.al. [17] reported SCNI may still cause oscillation near the boundary of the 
solution domain. What is more, Duan et.al. [18] reported that SCNI is only linear exactness 
and is not adequate for quadratic meshfree approximation. They further presented a 
consistency framework guiding the correction of the nodal derivatives based on the 
divergence theorem between a nodal shape function and its derivatives to remedy this issue. 
Particularly, a three-point integration scheme with second order accuracy named quadratically 
consistent three-point (QC3) integration method for second order meshfree method is 
developed in such framework. QC3 employs triangular background integration cells. In each 
integration cell, the nodal shape functions on six boundary sampling points and three domain 
sampling points are used to determinate the nodal corrected derivatives on the three domain 
sampling points. Later, by further reformulating the framework of nodal derivative correction 
based on the Hu-Washizu three-field variational principle, Duan et.al. [19] proposed the 
consistent element-free Galerkin (CEFG) method and showed its much better numerical 
performance in terms of accuracy, convergence, efficiency and stability than the standard 
EFG method. It should be stressed that the proposed EFG method is based on the Hu-Washizu 
three-field variational principle and can pass the patch tests in a consistent manner, i.e. EFG 
with linear, quadratic and cubic bases can, respectively, pass the linear, quadratic and cubic 
patch tests. Therefore, the method is named as consistent element-free Galerkin (CEFG) 
method. In contrast, the traditional EFG method is based on the classical one-field variational 
principle and cannot pass the patch tests. 
The paper is structured as follows. The standard EFG method is first reviewed in section 2. 
The proposed consistent EFG method is then described in section 3. Applications of the 
proposed method to thin-plates and shells as well as crack problems are presented in section 4 
followed by the conclusions in section 5. 

Element-free Galerkin (EFG) method: approximation and discretization 

EFG was invented by Belytschko et al. [2] about twenty years ago and so far it has already 
developed into one of the most popular and successful meshfree Galerkin methods. Consider 
a two dimensional elastostatic problem in the domain 2R  with a set of nodes 

IX , the 
displacement  u x  at an arbitrary point x  is approximated in a form similar to that in FEM 

         h
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I
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where U  is the unknown vector of nodal displacement parameters.  N x  is the matrix of 
nodal shape functions 
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The nodal shape function  IN x  is constructed by MLS and can be written as 

           T

I I IN wx p X x α x      (3) 

where  p x  is a vector of base functions which usually includes a complete basis of the 
polynomials to a given order,  Iw x  a weight function and  α x  the unknown vector. The 
unknown vector  α x  can be determined by the so called reproducibility condition, i.e. the 
consistency condition 
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Substitution of Eq.(3) into Eq.(4) leads to 

         A x α x p x      (5) 

where 
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The nodal MLS shape functions  IN x  can be obtained from Eq.(3) after the unknown vector 
 α x  is solved from Eq.(5). Computation of the derivatives of the MLS shape functions is by 

taking the derivative of Eq.(3) 
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where subscripts preceded by commas denote partial derivatives with respect to spatial 
coordinates. The unknown  , iα x  in Eq.(7) can be solved from the derivative of Eq.(6) 
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For a elastostatic problem on a 2D domain   bounded by  , EFG uses the classical 
displacement variational principle to construct the weak form   u , i.e 
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where D  is the material modulus, prefix   denotes a variation and the strain is 
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By taking the variation, the following discretized equation can be obtained 

    KU f      (13) 

where 

    T d


 K B DB         T Td d
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   f N b N t      (14) 

Consistent integration schemes for high order approximation 

Consistent element-free Galerkin methods (CEFG) proposed by Duan et.al. [19] can pass 
patch tests exactly and consistently. This is due to special integration schemes with corrected 



nodal derivatives are developed for EFG methods. The computation of the corrected nodal 
derivatives is based on the divergence theorem and it starts form the following equation: 

               , ,d d d
S S S
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where  ,I iN x  is the corrective derivatives, 
S  bounded by 

S  the cell for domain integration, 

 q x  the base obtained by 
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Using the divergence theorem to the right term of Eq.(15) leads to 
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Considering the  q x  is the base of the assumed Cauchy stress σ̂  space, Eq.(17) can be further 
rewritten as 

     
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Since the corrective derivatives used for domain integrations represent the assumed strain, 
Eq.(18) can be replaced by: 
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The above equation shows that the nodal corrected derivatives satisfy the orthogonality 
condition which means the nodal corrected derivative formulation can be derived from the 
Hu-Washizu three-field variational principle rational. The according consistent integration 
schemes are designed based on the numerical integration form of Eq.(15) with triangular 
integration cells as 
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where DW  and bw  are, respectively, the integration weights of the evaluation points Dx  in cells 
and bx  on edges, e

in  the unit normal to the edge e . For linear, quadratic and cubic meshfree 
approximation, the following one, three and six integration schemes are designed [19] based 
on Eq.(20) as showed in Figure 1. 
 

   

 (a) (b) (c) 

Figure 1. Schematic diagram of integration schemes for (a) Linear CEFG; (b) Quadratic 

CEFG and (c) Cubic CEFG; Dark dots denote approximation nodes, red crosses denote 

evaluation points for domain integration and green squares denote evaluation points for 

contour integration. 



Once nodal corrected derivatives at the domain quadrature points are obtained, the discretized 
equation based on the Hu-Washizu variational principle is: 

    KU f      (21) 

where 
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Numerical examples 

Patch tests 

Patch tests [19] are first investigated on a 2 2  domain with 5 5  nodes with irregular nodal 
distribution. Table 1, Table 2 and Table 3, respectively, compare the numerical results 
obtained by linear, quadratic and cubic approximations. It is observed that the proposed 
CEFG methods can pass patch tests in a consistent manner, i.e. linear CEFG is able to pass 
linear patch test, quadratic CEFG is able to pass up to quadratic patch test and cubic CEFG is 
able to pass up to cubic patch test. In contrast, the EFG methods fail to pass any patch test 
both in displacement and in energy. 

Table 1 Patch test results: Linear methods 

 
 

Linear Patch Test 
 Quadratic Patch 

Test 

 
Cubic Patch test 

Linear 

EFG 

dispE  
 0.37E-06  0.75E-01  0.21E+00 

engE  
 0.33E-05  0.23E+00  0.53E+00 

Linear 

CEFG 

dispE  
 0.35E-12  0.36E-01  0.13E+00 

engE  
 0.24E-11  0.16E+00  0.44E+00 

Table 2 Patch test results: Quadratic methods 

 
 

Linear Patch Test 
 Quadratic Patch 

Test 

 
Cubic Patch test 

Quadratic 

EFG 

dispE  
 0.48E-05  0.91E-05  0.26E-01 

engE  
 0.36E-04  0.42E-04  0.97E-01 

Quadratic 

CEFG 

dispE  
 0.27E-12  0.43E-12  0.19E-01 

engE  
 0.23E-11  0.16E-11  0.78E-01 

Table 3 Patch test results: Cubic methods 

 
 

Linear Patch Test 
 Quadratic Patch 

Test 

 
Cubic Patch test 

Cubic 

EFG 

dispE  
 0.23E-04  0.99E-05  0.21E-05 

engE  
 0.15E-03  0.35E-04  0.59E-05 

Cubic 

CEFG 

dispE  
 0.14E-11  0.85E-12  0.44E-12 

engE  
 0.72E-11  0.27E-11  0.13E-11 

 



Pressurized hollow cylinder 

A hollow cylinder subjected to internal and external pressure as shown in Figure 2a is 
examined. As shown in Figure 2b, due to two-fold symmetry, only the first quadrant is 
modeled. 

         

(a)                                                               (b) 
Figure 2.  Plate with a hole problem: (a) schematic diagram; (b) solution domain 

Five regular grids with the typical size of the discretization 0.25,0.2,0.125, 0.1,0.0625h   are 

employed in convergence study and the results are plotted in Figure 3. The proposed CEFG 

shows better accuracy and convergence rate than EFG both in displacement and in energy. 

Figure 4 compares the computational efficiency of displacement and energy. The proposed 

CEFG is much more efficient than standard EFG since less integration points are used. Figure 

5 shows the ,yy y  fields obtained by the six methods. Clearly, the proposed cubic CEFG 

method obtains the best ,yy y  field which is very smooth. In contrast, considerable oscillations 

present in the result of the cubic EFG method. The ,yy y  fields given by quadratic CEFG and 

quadratic EFG methods are similar. Same observation is applied to linear CEFG and linear 

EFG methods.  

 

   

(a)                                                                       (b) 
Figure 3.  Convergence of the plate with a hole problem: (a) displacement; (b) energy 



     

 (a) (b) 
Figure 4.  Computational efficiency of the plate with a hole problem: (a) displacement; 

(b) energy 

 
(a)                                           (b)                                        (c) 

 
(d)                                           (e)                                        (f) 

 

Figure 5.  Comparison of ,yy y  fields of the pressurized hollow cylinder problem 

obtained by: (a) Linear EFG; (b) Quadratic EFG; (c) Cubic EFG;(d) Linear CEFG; (e) 

Quadratic CEFG; (f) Cubic CEFG. 

Application to thin plates and shells 

Due to the high smoothness of the meshfree approximations, various works for thin-plate and 
–shell problems [20-26] have been investigated by meshfree methods. However, high order 
quadratures are commonly employed to evaluate the Galerkin weak form, which is 
computationally expensive. In this section, consistent element-free Galerkin method is further 



extended into thin-plates and thin-shells problems. For such high-order differential equations, 
cubic approximation is employed in this section. 

Thin plates  

Since the government equation of thin plates problem is a fourth-order partial differential 
equation, the kernel idea is to correct the nodal second order derivatives which leads to a 
curvature smoothing(CS) formulation. The consistent curvature smoothing formulation in 
each integration cell 

k  is as follows: 
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For cubic meshfree approximation which leads to a linear curvature smoothing(LCS) 
formulation, the above equation reduces to: 
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Eq.(25) are used to correct the nodal second order derivatives. 

Numerical examples 

A square with four simply supported edges under uniform load 

As showed in Figure 6, a 1 1  square subjected to uniform load with the magnitude 1q   is 
tested. The four edges of the square are simply supported. The Young's modules and the 
Poission ratio are 101 10E    and 0.3v  . The thickness of the plate is 0.001t  .  

 

Figure 6. A square with four simply supported edges under uniform load 

Four irregular grids are used for convergence study in this problem and the results are showed 
in Figure 7. The proposed LCS achieves the highest accuracy for both deflection and energy. 
Figure 8 shows the efficiency results of the deflection and energy. It is observed that the 
proposed LCS is the most efficiency method for both deflection and energy. 



   

(a)                                                                (b) 
Figure 7.  Convergence of the square with four simply supported edges under uniform 

load problem: (a) deflection; (b) energy. 

  
(a)                                                        (b) 

Figure 8.  Efficiency of a square with four simply supported edges under uniform load 
problem: (a) deflection; (b) energy 

Simply supported circular plate under uniform load 

A circular simply supported plate under uniform load as shown in Figure 9 is next 
investigated. The radius of the plate is 2R   and the thickness of the plate is 

0.001t  .Material parameters are the Young's modules 101 10E    and Poission ratio 0.3v  . 
The magnitude of applied uniform load is 0.1q  . 

 
Figure 9.  Simply supported circular plate under uniform load 

The full model is used for analysis with three grids containing 168, 414 and 1547 nodes, 
respectively. The convergence of the deflection of the center point CW  is showed in figure 10. 
It is clearly that the proposed LCS agrees best with the exact solution. 



 
Figure 10.  The convergence result of the deflection of the center point 

CW  

Thin shells problem 

The geometrically exact thin shell model [26] is considered in this paper. A linear strain 
smoothing formulation is proposed in parametric space for thin shell analysis which contains 
the membrane strain smoothing and curvature smoothing: 
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where
SA  is the background integration cell in parametric space.  q ξ  is chosen as a linear 

base of the parametric space A : 
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Numerical examples 

Pinched hemispherical shell with 18  hole 

Hemispherical shell problem is tested. The hemispherical has an 18  hole at the top. The 
thickness of the shell is 0.04h   and the radius 10R  . The material parameters contain 
Young's modulus 6.825e7E   and Poisson's ratio 0.3v  . The shell is subjected to two pairs of 
load which are equal and opposite along the X- and Y- axes. 

 
Figure 11. Schematic diagram of hemispherical shell with 18 hole problem 



Due to the symmetry, only a quarter of the geometry is modelled, see figure 11. The 

convergence result is shown in figure 12. It can be seen that the proposed method agrees well 

with the reference solution and performs better than GI-16 and CCS with the densest node 

configuration. 

 
Figure 12. Convergence of the X-displacement of point A 

Scordelis-Lo roof 

The Scordelis-Lo roof problem [26] is a benchmark problem for a curved shell analysis. The 
geometrical parameter of the roof are: the length 50L  , the radius 25R  , the thickness 0.25h   
and the span angle 80  . The material properties are: Young's modulus 4.32e8E   and the 
Poisson ratio 0v  . The roof is loaded by a self-weight 90q  . The model is fixed by two 
opposite rigid diaphragms and the other two edges are free. Four irregular grids with 36, 121, 
441 and 1684 nodes are employed for the convergence study and the convergence curves are 
presented in Figure 13. 

 

 

Figure 13. Convergence of the mid-side vertical displacements of Scordelis-Lo roof 

problem 

Figure 14 shows the contours of membrane stress 12n  by GI-16, CCS and LCS. The proposed 
LCS achieves smoothed contour while mildly spurious oscillations are observed by GI-16 and 
CCS. Figure 15 shows the contours of bending stress 11m  by GI-16, CCS and LCS. GI-16 
results severely spurious oscillations although it uses the most quadrature points. LCS 
achieves much better bending stress 11m  contour, but mild oscillations still appear. Only the 
proposed LCS results smoothed bending stress 11m  contour. This shows the superiority of the 
proposed LCS. 



   
(a)                                               (b)                                          (c) 

Figure 14. Membrane stress 
12n  contour of Scordelis-Lo roof problem by: (a) GI-16; (b) 

CCS; (c) LCS 

     
(a)                                               (b)                                          (c) 

Figure 15. Bending stress
11m contour of Scordelis-Lo roof problem by: (a) GI-16; (b) 

CCS; (c) LCS 

Application to crack problems 

The method has been developed to deal with a problem of linear elastic fracture mechanics. 
There is no enrichment function for the discontinuous displacement field. 

Crack description 

A phantom-node method[27] is developed to describe cracks. We start with the discontinuous 
displacement field in an element 
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where  H   is the Heaviside step function given by 

  
1 0

0 0

x
H x

x

 
 

 
 (30) 

and   0f x  represents the position of the crack. So, Eq.(29) are subdivided each term into 
parts that are associated with   0f x  and   0f x , we have 
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If we then let 
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We can write the displacement field as 
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where
1S and 

2S  are the index sets of the relative nodes of superposed element 1 and 2, 
respectively. As can be seen from Figure 16, each element contains original real nodes and 
phantom nodes. 
 

 
Figure 16 The decomposition of a cracked element into two elements 

 
Therefore, elements are overlapped on the position of the crack, and they are partially 
integrated to implement the discontinuous displacement across the crack. 

Numerical examples 

The discontinuous patch test 

This example was devised by Dolbow and Devan[28]. Shown in Figure.17 is a 3 3  square 
domain that is subjected to a discontinuous horizontal traction with 10t  . It is assumed that 
the domain is completely bisected into two regions by the failure surface( i.e. red line). 

 
Figure.17 Schematic diagram of the discontinuous patch test configuration and loading 

A 4 4  grid is used for analysis. The distributions of xx  are shown in Figure.18 for 

compressible case and incompressible case, respectively. The results suggest that the method 

can exactly pass the test in the both cases. 



            
Figure. 18 

xx  distribution of: (a) compressible case ;(b) incompressible case 

Edge cracked plates under tension or shear 

Consider a plane stress plate of width 7b  and height 16l   with an edge crack length of 
2 3.5a b  . The material properties are 710E  , and 0.3  .The plate is subjected to a 

tension 1   at the top(see Figure.19a) or sustains a shear 1  on the top edge(see 
Figure.19b). 

                                
(a)                                                           (b) 

Figure.19 Schematic diagram of the edge cracked plate under:(a) tension; (b) shear 

 
The analytical solution for the plate under tension is given by 

  IK F a    (35) 

with   2 3 41.12 0.231 10.55 21.72 30.39F          .The values of IK  and IIK  for the shear 
case in [29] are used as the reference solution: 

 34.0IK  , 4.55IIK   (36) 

Table.4 The results of normalized IK  and IIK  

Cases 
EFG 

IK       IIK  

CEFG 

IK       IIK  

Tension case 1.067      -- 1.008      -- 

Shear case   1.062  0.991     1.005     0.998 

A 30 71  regular grid is used for the evaluating of stress intensity factors. Table.4 lists the 
evaluating results of normalized IK  and IIK  with two methods for tension case and shear case, 
respectively. The results show that CEFG method is able to give more accurate stress 
intensity factors than the standard EFG method. 



Crack growth from a fillet 

This example shows the growth of a crack from a fillet in a structural member. The 
experiment to be modelled is shown in Figure.20, with the computational domain outlined 
with a dashed line. The material properties are 200E Gpa , and 0.3  , respectively. The 
applied load is 1.0P N . The initial crack length is 

0 5a mm . To model a very thick beam, 
the displacement is fixed along the entire bottom of the computational domain, that is, rigid 
constraint. A flexible constraint is idealized to model a very thin beam. 

 
Figure.20 Experimental configuration and simulated region for a fillet problem 

 
Figure.21 Crack growth paths of two different constraints: a. Flexible constraint; b. 

Rigid constraint 

This experiment is presented in Reference [30] to investigate the effect of the thickness of the 
lower I-beam on crack growth. Figure.21 shows the crack paths predicted by the proposed 
method for a thick I-beam and a thin I-beam, respectively. These results agree well with the 
experimental results [30].  

Conclusions 

Consistent element-free Galerkin method and its applications are presented. For elastostatic 

solids, CEFG performs much better than standard EFG in terms of accuracy, convergence and 

efficiency, according to the numerical results. Application of the high order CEFG method to 

thin plates and shells as well as crack problems is also presented. It is demonstrated that the 

CEFG method is really promising in these applications.  
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