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Abstract 

Nano-structured materials (e.g. nanocomposites, nanoporous materials, nanocrystalline 

materials, etc.) and nano-scale structural elements (e.g. nanotubes, nanofilms, nanobeams, 

etc.) have unique mechanical and physical properties. For nano-structured materials 

containing inhomogeneities (e.g. voids and particles) in the nanoscale dimensions such as 

nanoporous materials and nanocomposites, the size effect due to surface energy due to 

nanoscale inhomogeneities can play an important role on their mechanical properties and 

responses. In this paper, the finite element based micromechanical model for analysis of 

materials containing nanoscale inhomogeneities incorporating Gurtin-Murdoch surface theory 

is presented. The proposed micromechanical model is applied to examine the responses and 

properties of nano-structured materials, i.e., nanoporous and nanocomposite materials. 

Selected numerical results are presented to portray the features of the elastic field responses 

and properties of elastic materials with nanoscale inhomogeneities. The finite element-based 

micromechanical model presented in this paper is an efficient tool to analyze the response and 

predict the mechanical properties of nano-structured materials. 
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Introduction 

Nanomechanics is a study of responses and properties of materials and structures at the 

nanoscale. Steritz et al. [1] and Dingreville et al. [2] have clearly explained that atoms 

adjacent to the free surface have a different local environment than do atoms in the bulk of a 

material. The nanoscale materials or structures contain larger fraction of energy associated 

with surface atoms when compared to those in the bulk material, and as a result, structures at 

the nanoscale are known to exhibit size-dependent behavior.  

 

Within the context of modelling nanoscale behavior of materials and structures, two 

predominant mathematical approaches have been commonly employed in the literature, one 

known as the molecular or atomistic simulations and the other corresponding to the modified 

continuum-based models. The molecular-based models, while providing more direct response 

prediction, generally consume tremendous computational resources because billions of atoms 

at the nanoscale is needed to include in the simulation models. The continuum-based models, 

in contrast to the molecular-based models, are less complicated and much more 

computationally efficient. 

 

Gurtin-Murdoch model, proposed by Gurtin and Murdoch [3, 4], is a mathematical model that 

incorporates the effects of surface and interfacial energy into continuum mechanics. A good 

agreement between solutions based on the Gurtin–Murdoch model and atomistic simulations 

for nano-scale structures has been reported by various researchers (e.g., [5-7]). Sapsathiarn 



and Rajapakse [7] shown that the Gurtin-Murdoch nanoscale beam model is capable of 

simulating the experimental results of chromium cantilever beams loaded by an atomic force 

microscope. Mogilevskaya et al. [8] considered the multiple interaction of circular nano-

inclusions in unbounded domain by using a complex variables formulation. Fang et al. [9] 

studied the elastic interaction between screw dislocations and an embedded coated circular 

nanowire with interface stresses based on Gurtin and Murdoch theory and explained that the 

effect of the interface stress on the motion and the equilibrium position of the dislocation near 

the nanowire is significant when the radius of the nanowire is reduced to nanometer 

dimensions. A finite-element formulation for static and dynamic modeling of circular 

nanoplates based on Gurtin-Murdoch theory has been presented by Sapsathiarn and Rajapakse 

[10]. Mi and Kouris [11] examined the stress concentration Stress concentration in the 

vicinity of a nanovoid near the free surface of an elastic half-space and its dependence on 

surface properties. 

 

In this paper, a finite element based micromechanical model for elastic materials with 

nanoscale inhomogeneities incorporating Gurtin-Murdoch surface stress effects is developed. 

Selected numerical results for the elastic fields and properties of elastic composites containing 

nanoscale inhomogeneities, i.e., nanoporous and nanocomposite materials, are presented. The 

finite element-based micromechanical model of nanoparticle-reinforced composites 

developed in the present study is an efficient tool to investigate the response and properties of 

nano-structured materials with practically useful arbitrary shaped nanoscale inhomogeneities, 

multiple voids/particles, non-symmetric loading, etc.    

 

Figure 1. A representative volume element for composite materials containing a 

nanoscale inhomogeneity, e.g., nanovoid or nanoparticle. 

Theoretical consideration 

Consider a two-dimensional material plane containing a nanoscale inhomogeneity, e.g., 

nanovoid or nanoparticle, as shown in Fig. 1. In the case of material with a nanoparticle, the 

matrix and inhomogeneity are considered as linearly orthotropic materials and the matrix-

inhomogeneity bonding is assumed to be perfect. The Cartesian coordinates (x,y) is used in 

the formulation. The research methodology, procedures and fundamental theories to be 

employed in the analysis are summarized in the subsequent sections. 

Governing equations and surface elasticity model 

Regarding linear elasticity theory, the equilibrium equation in the absence of body forces and 

the constitutive relation of the bulk material can be written using the standard indicial notation 

as 
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where 
B

ij , j  denotes the components of stress tensor for a bulk material (inhomogeneity and 

matrix); ij  and B

kl  denote the second-rank tensors of strain and stress respectively; and the 

elastic matrix ijklC  is the fourth-rank tensor. 

 

The elastic matrices D in the Voigt notation for plane stress and plane strain deformations can 

be written as 
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                        (plane stress)                                  (plane strain)    

where ijC is the component of elastic compliance matrix in the Voigt notation. 

 

The incorporation of surface stress effects is needed due to the fact that the inhomogeneity in 

the composite is in a nanoscale size. Gurtin and Murdoch [3, 4] proposed a surface stress 

model to account for the surface effects at the nanoscale. Models of nanoscale structures 

based on the Gurtin-Murdoch continuum theory have an elastic surface, mathematically zero 

thickness, perfectly bonded to the bulk material. The elastic surface has distinct material 

properties and accounts for the surface energy effects [6]. The generalized Young-Laplace 

equation [12], surface constitutive relations and strain-displacement relationship of the surface 

can be expressed as [3, 4] 
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where superscripts B and S denote the quantities corresponding to the bulk and the surface 

respectively; M I( ) ( )  denotes the jump of the field quantity across the 

inhomogeneity and matrix interface where the subscripts M and I are used to identify 

quantities associated with the matrix and the inhomogeneity respectively; S  and S  are 

surface Lamé constants; 0  is the residual surface tension under unstrained conditions; in  

denotes the components of the unit normal vector of the surface; and k  is the curvature 

tensor of the surface. It should be noted that the surface material properties, 
S , S  and 0  

can be determined from atomistic simulations [13]. 
 

Tian and Rajapakse [14] presented a finite element formulation for the analysis of a two-

dimensional elastic material plane containing a nanoscale inhomogeneity by employing the 

energy method. The potential energy ( ) of the system in Fig. 1 consists of the elastic strain 

energies of the bulk inhomogeneity (
BIU ) and matrix (

BMU ) materials, the surface elastic 

strain energy (
SU ) due to the surface effects and the potential energy (W) due to the 

application of external loads, and can be written as 

 BI BM SU U U W  (4) 



in which the superscript BI and BM denotes quantities corresponding to the bulk 

inhomogeneity and matrix materials respectively. 
 

The elastic strain energies for the bulk inhomogeneity (UBI) and for the matrix material (UBM) 

can be expressed as 
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The potential energy (W) due to the application of external loads can be expressed as 
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where T and u denote the vectors of surface traction and surface displacement 

respectively; and the superscript T denotes the transpose of a vector or matrix. 
 

Based on the Gurtin-Murdoch surface stress model expressed in Eq. (3), the surface elastic 

strain energy (US) can be obtained as 
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Introducing the element shape function N(x,y) to interpolate the field variables u within an 

element by 

 { } [ ]{ }u N u  (8) 

where u  denotes nodal displacement vector. 

The element strain vector {} can be determined from Eq. (8) using the classical strain-

displacement relation as  

 { } [ ]{ }B u  (9) 

where [ ]B  is a strain-displacement matrix in which the elements are the derivatives of the 

element shape functions, [ ] [ ] iB N / x . 

Substitution of Eq. (8) and (9) into Eq. (5) - (7) together with the constitutive relations for 

bulk (matrix and inhomogeneity) and surface materials, Eq. (4) becomes 
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Applying the stationary condition of , i.e., 0 , with respect to the nodal 

displacement components, the equilibrium equations for system in Fig. 1 can be obtained as  

 [ ]{ }={ }K u f  (11) 

where  
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Micromechanical model of nanocomposites 

A micromechanical model based on finite element formulation given in the preceding section 

is developed in the present study for analysis of elastic materials containing nanoscale 

inhomogeneities. The micromechanical analysis is performed by using a micromechanics 

theory which relates mechanics between two different length scale problems, i.e., (1) the 

macroscopic level in which the material is conceptually represented as a homogeneous 

material and (2) the level of the constituents in which the material properties are always 

heterogeneous and consist of distinguishable phases such as the main matrix material, 

inclusions and cavities or voids. Properties of elastic materials containing nanoscale 

inhomogeneities can be determined by the analysis in the level of the constituents. The 

analysis might be performed on a “representative volume element” or a “unit cell” which can 

be isolated from the composite material and is in a state of equilibrium. The unit cell for 

materials considered in the present work is schematically presented in Fig. 1. 
 

The macroscopic constitutive relation of the materials with nanoscale inhomogeneities can be 

expressed in terms of the macro stress and the macro strain as 
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According to the micromechanics theory, the macro stress,
ij , and macro strain, 

ij , can be 

defined as the volume average stress in a RVE as  
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Numerical results and discussion 

A selected set of numerical solutions is presented in this section for the plane strain case of 

elastic material with nanoscale inhomogeneity to portray the response within nano-structured 

materials and investigate the influence of inhomogeneity volume fraction to the mechanical 

properties of the nano-structured materials. Two types of materials are considered in the 

numerical simulation, i.e. (1) nanocomposite materials (i.e., materials containing nanoscale 

particles) and (2) nanoporous materials (i.e., materials containing nanoscale cavities or voids). 

The matrix and particle inhomogeneity materials are considered to be linearly elastic and 

isotropic in the numerical study with Lame constants, ME = 40 GPa, Mv  = 0.20 GPa for the 



matrix material and IE  = 80 GPa, Iv  = 0.25 GPa for the particle inhomogeneity material. The 

surface parameter 02 10S S SK        N/m is considered in the numerical example. 

The unit cell subjected to a prescribed displacement in the x-direction over the positive x face 

(a surface that is perpendicular to the x-axis and on the positive x side) is considered in the 

numerical example. The other faces are constrained in such a way that only the movement in 

the x-direction is allowed and the displacements in all other directions are prevented. The 

properties of nanocomposite and nanoporous materials can be determined from the fields 

within the unit cell being considered by using Eqs. (13)-(15).  

 

                      

          (a) 
xx  distribution                                  (b) 

xx  profile (across the inhomogeneity) 

Figure 2. (a) Distribution and (b) profile of the stress σxx for nanocomposites with 

circular nano-particles 

 

 
 

Figure 3. Variation of material properties of nanocomposites with circular nano-

particles versus the volume fraction of the inhomogeneity (VI). 

The numerical results for the case of nanocomposites containing circular nano-particles are 

presented in Figs. 2 and 3. The distribution of stress σxx over the half-domain of the unit cell is 

presented in Fig. 2(a) for a nanocomposite material with volume fraction of the 

inhomogeneity VI = 0.2. The corresponding profile of stress σxx along the x-axis across the 

center of the nano-particle inhomogeneity is presented in Fig. 2(b). The unit cell is stretched 

and the tensile stress xx is generated all over the unit cell. The stress xx in the domain of 

inhomogeneity is generally higher compared to those in the matrix domain showing the stress 
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disturbance in a composite material due to the presence of the nanoscale inhomogeneity. The 

influence of volume fraction of the inhomogeneity (VI) to the mechanical properties 11

effC  and 

12

effC  of the nanocomposite can be observed in Fig. 3. It is shown in Fig. 3 that the properties 

of nanoinclusion material are increasing as the volume fraction VI increases. It should be 

observed that the relations between the material coefficients and VI are non-linear. 

 

 

Figure 4. Distribution of the stress σxx for nanoporous material’s properties with 

circular nano-voids. 

 

 

Figure 5. Variation of nanoporous material’s properties (circular nano-voids) versus the 

volume fraction of the inhomogeneity (VI). 

The stress distribution and properties of nanoporous material with circular nano-voids 

considered in the numerical study are presented in Figs. 4 and 5 respectively. The volume 

fraction of the inhomogeneity (nanoscale voids) considered in Fig. 4 is VI = 0.2. Similar 

behavior is observed for the case of a nanoporous material, i.e., the unit cell is stretched and 

the tensile stress xx is generated all over the domain. Based on the results shown in Fig. 4, the 

stress concentration in the vicinity of a nanovoid is noted. Similar to the case of 

nanocomposite, the dependence of nanoporous material’s properties on the volume fraction of 

the inhomogeneity (VI) is non-linear (see Figs. 3 and 5). As expected, the properties of 

nanoporous material are decreasing as the volume fraction of nanovoid VI increases.  
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Conclusions 

In this paper, a finite element-based micromechanics model for analysis of elastic materials 

containing nanoscale inhomogeneities incorporating surface stress effects has been developed. 

The Gurtin-Murdoch surface elasticity is employed in the micromechanical model to 

incorporate the interface energy effects of nanoscale inhomogeneity. Selected numerical 

results are presented to portray the features of the elastic field responses and properties of 

elastic materials with nanoscale inhomogeneities. Two types of materials are considered in the 

numerical simulation, i.e. nanocomposite materials (i.e., materials containing nanoscale 

particles) and nanoporous materials (i.e., materials containing nanoscale cavities or voids).  

Numerical results of stress and material properties for nanocomposite and nanoporous 

materials show considerable dependence on volume fraction of inhomogeneity. The finite 

element-based micromechanical model provides an efficient tool to analyze and predict the 

mechanical response of nano-inhomogeneities with arbitrary-shaped nanoscale particles, 

multiple particles, nanovoid, multiple nanovoid, non-symmetric loading, etc.  
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