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Abstract

In the paper the exact solution of a boundary value problem for a rectangle clamped at one
end is constructed. The solution is given in the form of explicit expansions in Papkovich—
Fadle eigenfunctions. The coefficients of the expansions are clearly determined by means of
functions biorthogonal to Papkovich—Fadle eigenfunctions.
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Introduction

Numerous publications are devoted to the approximate and numerical solutions of boundary
value problems of the theory of elasticity for a rectangle with a clamped end (ends). The main
reason for special interest in these problems is, partly, that sometimes the obtained solutions
of the same problem could noticeably differ in different authors’ works, depending on the way
which method (approach) was used for their construction. For example, at the angular point
some solutions had a singularity that is characteristic of an infinite rectangular wedge, one
face of which is rigidly clamped and to the other one is applied an external load. In other
solutions this singularity was absent.

In this paper is constructed the exact solution of a boundary value problem of the theory of

elasticit?/ for a rectangle, the left end of which is clamped and on the right end is applied a
normal load (even-symmetric and odd-symmetric deformations).

Statement of the Problem

Let us consider a rectangle {P:|y|<1, 0<x<d}. We will assume that the long sides y = +1
are free, i.e.

o, (X,il) =17, (X,il) =0, @
the left end x =0 is clamped, and a normal load is applied on the rightend x=d, i.e.
u(0,y)=v(0,y)=0,
o,(d,y) = (y).7(d,y)=0.

Then the solution in the rectangle written as expansions in Papkovich—Fadle eigenfunctions
has the following form:
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U(x,y)= 2 AE(A.y)sinh 2,x+ BE(A,y)cosh 7x+

_ A (T y)sion ks B2 7 y)eosh
V(xy)= 3 Az(A, y)cosh 2x+ Bz (A, y)sinh Ak

' Ar(y)ooshTx+ B (7 y)sinh T,



0, (%, ¥) = D AS, (4. ¥)cosh A X + B, (4, y)sinh A,x+

(oo o B, ()
0, (%)= Y AS, (4 Y)c0sh 4 X + Bs, (4, Y)sinh Ax +

5, (oo T B, (i B
7y (% y) = 3 At (A.y)sinh X+ Bty (4. y)cosh 4 x+

AL (st e Bt (7 eosh B
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Here U (X,y)=Gu(x,y), V(x,¥)=Gv(x,y); u(xy) and v(x,y) are displacements along

the x-axis (longitudinal) and along the y-axis (transverse) respectively; G is the shear
modulus; v is Poisson's ratio.

Assume that the elementary part of the solution is already known. Satisfying the boundary
conditions of (2) on the ends of the rectangle, we come to the problem of determining the
coefficients a, from the expansions

=H & (2 Y)+BE(4.Y)
=§, +Ax(4.Y)
iAks (4. y)cosh A d +B,s, (4, y)sinh A d + @

+AS, (Z y)cosh Ad +Bs, (Z y)sinth,
0= i&txy (4.y)sinh A4 d +Bt, (4, y)coshAd +
+EtXy (Z y)sinh Ad + B_kth (Z y)cosh Ad.

Following the general scheme of solving a boundary value problem for a half-strip [1, 2], with
the help of the functions u, (y), v, (Y), % (¥). t(y) biorthogonal to the Papkovich-Fadle

eigenfunctions £(4.,Y), 2(4.Y), S.(4.Y), S,(4.Yy), we obtain the system of algebraic
equations for each k >1:

0=BAM, + BAM,,
0=AM, +AM,,
o, =AM, coshA4d +BM,sinh A4d +
+AM, cosh A4,d + B,M, sinh A4 d,
0=AAM,sinhAd+BAM, coshAd +
+AAM, sinh 4 d + B A4M, cosh A d.
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Solving (5), we find

ol ﬂkZ(cosh Ad —cosh ikd)

A=, A, ©
o7 (Asinh 2,d - 4 sinh 2,d)
Bk o Mk Ak ’

where
- 1
a}qn+awcnzjo(ﬂxdyw% M, =L'(4)/24,,
e

A, = A % (cosh 2,d — cosh ,1ko|)2 ~ (4 sinh 4,d - 4 sinh 2,d ) 4, sinh 4,d - 4sinh 2,d).

It is obvious that A, is real.

Substituting the coefficients A and B, in formulae for displacements and stresses and
isolating null-series [1], we obtain

U y)=i2Re{ak L) BATLA, X)}}

k=1 Kk

x y :i“ZRe

=1

xy)=22Re{ (hjl“k Jrec(s X)} ™
ZZRe{ ﬂky)Re{sz(ﬂkx)}

2(A.y ReC/ikx
k|\/|

2
k

) y):i“ZRe{ak by (4.Y) Re{ﬂks(ﬂk,X)}}

21<Mk Ak
where
C(A4.X) :ﬂkZ(cosh 4,d —cosh ﬂkd)cosh ﬂkX_Z(ﬂk sinh 4. d — 4, sinh ﬂkd)sinh A X,
S(A.Xx)= ﬂkZ(cosh 4,d —cosh ﬂkd)sinh /IKX—Z(JK sinh 4,d — 4, sinh ﬂkd)cosh A X
Examples of Solving a Boundary Value Problem

Example 1. Even-Symmetric Deformation
Let the self-equilibrated normal load act on the right end of the rectangle (Fig. 1):

, 6a® , o

o(y)=1Y "5’ 4 (yka),
0 (lya).

(8)



Figure 1. The scheme of the boundary value problem

The Papkovich-Fadle eigenfunctions £(4,.y), z(4.Y), S (4.Y): s,(4.Y). t,(4.Y)
have the form

E(AuY)= (—smﬂk——ﬂkcosﬂkjcos}tky——lkysm&ksmﬂky,

( )=(—/1k COS A, +S|n/1kjsm/1ky——/1kysmﬂkcosﬁky,
5, (4. Y)=(1+v) A {(sin 4, — 4 cos 4 )cos 4.y — A ysin 4 sin 4.y}, (9)
s, (4. Y)=(1+v) A {(sin 4 + A cos 4 )cos A,y + A ysin 4 sin Ay},
ty (4. Y)=(1+v)Ai{cos 4 sin 4.y —ysin 4 cos 4y},
where the numbers A, 4, (Re 4, <0) form the set {iﬂk;iZ};:A of all the complex
zeros of the entire function L(4)=A(A+sinAcosA).

The functions biorthogonal to the Papkovich-Fadle eigenfunctions &(4,y), x(4.Y).
$.(4.Y) s,(4.y) have the form [3]
1 | A cosiy
= —(o(y-1)+0o 1)) |,
() (1+v)[ sin A, (Oly-1+3(y+ ))}

__sindy __ cosAy ___ SinAy
vily)= (1+v)sin/1k’xk( )_2(1+v)/1ksinik’tk( )= 2(L+v)sing,

where ¢ is the Dirac delta function.

(10)

The numbers M, and o, are equal to

8((15- 604 )sinad, +(a’A? ~15)al, coswﬂk)
5(1+v) A sin 4,

Substituting the found coefficients in formulae (7), we obtain the solution of the boundary
value problem.

M, =cos’ 4, o, =



In Fig. 2 the distribution curves of the normal stresses o, (1,y), 0,(0.9,y) and normal load

o(y) are shown (it was assumed that d =1, & =0.5, v = %).
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Figure 2. The distributions of the normal stresses o, (1, y), o,(0.9,y) and
normal load o (y)

Example 2. Odd-Symmetric deformation

Let the normal load that is self-equilibrated in moment act on the right end of the rectangle
(Fig. 3):

103 3
o(y)=y ————y2+ 2y (11)
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Figure 3. The scheme of the boundary value problem

In this case the Papkovich—Fadle eigenfunctions have the following form:
£(40Y) {sinﬁk ) cos@jsin@w“{@ysin@ COS A,

2(A.y) = —(PTvsinﬂk +1+Tvﬂk cosAchos/lky —1+T‘//1kysin/1k sin Ay,
S, (4. Y)=(1+v) A {(2sin 4, — 4 cos A )sin 4y + A ysin 4, cos Ay}, (12)



Sy(lk,y) =1+ v)/If{cos}Lk sinA,y — ysin 4, cos 4y},
ty (4. Y)=A+v)A{(sin 4, — 4 cos A )cos Ay — 4 ysin 4 sin 4y},

and the numbers 4, , Z (Re A, <0) form the set {i/lk;iZ} = A of all the complex zeros

B
k=1

of the entire function L(4)=4—-sinAcosA.

The functions biorthogonal to the Papkovich-Fadle eigenfunctions &(4,,y), x(4.Y),
Se(4:Y): S, (4.Yy) have the form [4]

1 sinAy 1 cosAy
uk(y)_(1+v) sin A, ’Vk(y)_(1+v),1ksin4’

B 1 sindy 3 1 cos Ay
Xk(y)_2(1+v)/1kz(sinﬂk y]’tk(y)_z(lw)zk sind,

The numbers M, and o, are equal to
SN, 8((105— 4547 + 4! )sin 4, +5(24 - 21) 4 cos 4, )
TR 7(1+v)Alsin 4,

Substituting the found coefficients in formulae (7), we obtain the solution of the boundary
value problem.

(13)

In Fig. 4 the distribution curves of the normal stresses o, (1,y), 0,(0.9,y) and normal load

a(y) are shown (it was assumed that d =1, v :%).
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Figure 4. The distributions of the normal stresses o, (1, y), o,(0.9,y) and
normal load o (y).

Conclusions

In both examples, on the end, the expanded functions u=v =0, and we continue them by

zero. Therefore, there will be no singularity at the angles if it is not introduced artificially by
choosing a non-zero continuation outside the segment (end) [-1,1] in this or that way.
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