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Abstract 
Higher order extension of Particle Discretization Scheme (PDS) and its implementation in FEM 
framework (HO-PDS-FEM) are presented in this short paper. PDS uses the conjugate 
tessellation pair Voronoi and Delaunay to approximate functions and their derivatives, 
respectively. In HO-PDS, a function and its derivatives are approximated as the union of the 
local polynomial expansions. The support of the base polynomial functions being confined to 
the domain of each tessellation element, the PDS approximations of function and the derivatives 
are inherently discontinuous along the boundaries of tessellation elements. Higher order PDS-
FEM utilizes these discontinuities in function approximation to model discontinuities like 
cracks numerically efficiently.  Higher order PDS is implemented in FEM framework to solve 
boundary value problem of elastic solids with mode-I cracks. The verification tests show that 
the higher order PDS-FEM has higher accuracy and convergence rate, compared to the original 
0th-orderPDS-FEM[1] proposed by Hori et al. Several benchmark problems are presented to 
demonstrate the improvement in accuracy. J-integral about a mode-I crack tip field is estimated 
to demonstrate the improvement in accuracy of crack tip stress fields. It is shown that the 
singular crack tip stress field also has higher order accuracy and convergence rates, in addition 
to improved crack surface traction.  
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Introduction 

Real materials are far from ideal and contain numerous microscopic cracks, flaws, etc. While 
these have negligible effect on the ordinary deformations of materials, movements of crack tips, 
which are moving stress singularities, are very sensitive to these minor heterogeneities and 
make the crack surfaces to bend, kink and branch. Due to this high sensitivity to minor 
heterogeneities, even nearly identical and homogeneous samples under same loading conditions 
do not produce the identical crack pattern. Thus, what is required for practical applications is 
probability density distribution of possible crack paths, instead of theoretical crack 
configuration under ideal condition. Generation of probability density distribution with Monte-
Carlo simulations requires efficient numerical technique to model propagating cracks.  
 
There exists a number of numerical methods, with their own different advantages, for 
simulating crack propagation. Most of these methods either belong to the family of particle 
methods or FEM. Recent enhancements of FEM [2] enable accurate modeling of theoretically 
predicted crack paths. However, most FEM based methods involve significant numerical 
overhead (e.g. tracking crack front, especial treatment for crack branching; introducing new 
degrees of freedoms, etc.).  Analysis of large deformation and subsequently simulating the 
complex cracks are easily handled in particle methods [3, 4]. Although particle methods have 
low computational overhead, those lacks the mathematical rigorousness. Hori et al.[1, 5] 
proposed PDS-FEM as a numerical technique which combine mathematical rigorousness of 
FEM and simple crack treatment of particle methods. The crack treatment of PDS is fairly 
simple and involves negligible numerical overhead, making it ideal for probabilistic studies of 
crack path variability.   



The original proposal of PDS-FEM [1, 5], which we refer in this paper as 0th-order PDS-
FEM, has only first order accuracy. PDS-FEM is based on Particle Discretization Scheme 
(PDS), which utilizes the characteristic functions of conjugate domain tessellations to 
approximate function and its derivatives. This paper presents an overview of higher order 
extension of PDS and PDS-FEM [6, 7], numerical treatments for modeling cracks and 
verification, and other improvements.  
 
This short paper consists of five sections. Section two and three provide brief descriptions of 
higher order PDS and its implementation in FEM framework (PDS-FEM). The latter part of 
third section presents PDS-FEM’s efficient treatment to model cracks. Some numerical results 
and discussions are included in the fourth section, while the fifth section presents some 
concluding remarks.  

Higher order PDS 

A unique feature of PDS is that it uses conjugate domain tessellations for approximation of 
functions and its derivatives. Though, any pair of tessellation could be utilized, authors have 
followed the former work and used Voronoi and Delaunay tessellations to approximate function 
and its derivatives, respectively.  

 
Figure 1 Voronoi and Delaunay tessellation in 2D 

Assume )(xf   to be a target function in a given domain 𝑆𝑆 ; its Voronoi and Delaunay 
tessellations are denoted by {Φ𝛼𝛼} & {Ψ𝛽𝛽}; the set of Voronoi mother points is {𝒙𝒙𝛼𝛼} and  the set 
of center of gravity of Delaunay tessellation is {𝒙𝒙𝛽𝛽}  (see Fig. 1). 𝜑𝜑𝛼𝛼  and 𝜓𝜓𝛽𝛽  are the 
characteristics function of  Φ𝛼𝛼 and Ψ𝛽𝛽, respectively. Higher order PDS approximates 𝑓𝑓(𝑥𝑥) and 
its derivatives ∇𝑓𝑓(𝑥𝑥) as  
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where 𝑃𝑃𝛼𝛼𝛼𝛼  and 𝑄𝑄𝛽𝛽𝛼𝛼  are sets of base functions. Though any suitable set of functions for 
modeling the problem under consideration can be used, inspired by the Taylor series we use 
polynomial base functions such as 

  
𝑃𝑃𝛼𝛼𝛼𝛼 ∈ 𝑃𝑃𝛼𝛼 = {1, (𝒙𝒙 − 𝒙𝒙𝛼𝛼) , … , (𝒙𝒙 − 𝒙𝒙𝛼𝛼)𝑟𝑟  , … }𝜙𝜙𝛼𝛼(𝒙𝒙), 
𝑄𝑄𝛽𝛽𝛽𝛽 ∈ 𝑃𝑃𝛽𝛽 = {1, (𝒙𝒙 − 𝒙𝒙𝛽𝛽), … , (𝒙𝒙 − 𝒙𝒙𝛽𝛽)𝑟𝑟  , … }𝜓𝜓𝛽𝛽(𝒙𝒙). 
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Here, αN and βN are the total number of Voronoi and Delaunay tessellation elements, 
respectively.  |𝑃𝑃𝛼𝛼|  and �𝑄𝑄𝛽𝛽�  denote the number of base functions in each of the sets.  
 
The unknown coefficients of approximations 𝑓𝑓𝛼𝛼𝛼𝛼  and 𝒈𝒈𝛽𝛽𝛼𝛼  can be found by minimizing the 
errors where 𝐸𝐸𝑓𝑓 = ∫ (𝑓𝑓 − 𝑓𝑓𝑑𝑑)d𝑠𝑠  and 𝐸𝐸𝑔𝑔 = ∫ (𝛁𝛁𝑓𝑓 − 𝒈𝒈𝑑𝑑)d𝑠𝑠 . Minimization of these errors 
leads to the solving of the following linear system of equations.  

 

�𝑓𝑓𝛼𝛼𝛼𝛼𝐼𝐼𝛼𝛼𝛽𝛽𝛼𝛼
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= ∫ 𝑓𝑓(𝒙𝒙)𝑃𝑃𝛼𝛼𝛽𝛽d𝑠𝑠                                                       (2) 
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Here, 𝐼𝐼𝛼𝛼𝛽𝛽𝛼𝛼 = ∫ 𝑃𝑃𝛼𝛼𝛼𝛼𝑃𝑃𝛼𝛼𝛽𝛽d𝑠𝑠 and 𝐼𝐼𝛽𝛽𝛽𝛽𝛼𝛼 = ∫ 𝑄𝑄𝛽𝛽𝛼𝛼𝑄𝑄𝛽𝛽𝛽𝛽d𝑠𝑠. While there is no restriction that only 
polynomial bases should be included in 𝑃𝑃𝛼𝛼 and 𝑄𝑄𝛽𝛽, inspired by Taylor expansion, we prefer to 
include polynomial bases. However, it is best to use suitable set of base functions, according to 
the nature of the problem.  
Multiplying with the characteristic functions of each tessellation elements, the support of base 
functions are confined to the domain of each tessellation element. Hence the function and 
derivative approximations of HO-PDS have numerous discontinuities along the boundaries of 
respective tessellation elements.  

Implementation of higher order PDS in FEM framework 
The use of higher order PDS to approximate the field variables and their derivatives in FEM 
framework is referred as higher order PDS-FEM (HO-PDS-FEM). Consider a boundary value 
problem (BVP) with infinitesimal deformation of a linear elastic domain. Body forces are 
ignored for the sake of brevity. The standard Lagrange for linear elasticity BVP is stated as 
follows  

𝐿𝐿[𝜺𝜺(𝒖𝒖)] =
1
2
∫ 𝜺𝜺: 𝒄𝒄: 𝜺𝜺 d𝑠𝑠                                                        (4) 

Here, 𝜀𝜀𝑖𝑖𝑖𝑖 = 1
2

(𝑢𝑢𝑖𝑖,𝑖𝑖+ 𝑢𝑢𝑖𝑖 ,𝑖𝑖 ) is the strain tensor and 𝒄𝒄 is fourth order elasticity tensor defining 
linear stress-strain relation. Setting the first variation 𝛿𝛿𝐿𝐿 = 0, we can obtain the strong form of 
the governing equations and essential boundary conditions.  
 
Following the HO-PDS the unknown displacement 𝒖𝒖 is approximated as  

𝑢𝑢𝑖𝑖(𝒙𝒙) ≈ 𝑢𝑢𝑖𝑖𝑑𝑑(𝒙𝒙) = ��𝑢𝑢𝑖𝑖𝛼𝛼𝛼𝛼𝑃𝑃𝛼𝛼𝛼𝛼
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.                                               (5) 

 
Further, following the definition of derivative approximation of HO-PDS, the derivatives of 
displacement are approximated as 𝑢𝑢𝑖𝑖 ,𝑖𝑖 ≈ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖

𝛽𝛽𝛽𝛽𝑄𝑄𝛽𝛽𝛽𝛽𝛽𝛽,𝛽𝛽 . Based on Eq. 2, 𝑢𝑢𝑖𝑖𝑖𝑖
𝛽𝛽𝛽𝛽 can be expressed 

as 

𝑢𝑢𝑖𝑖𝑖𝑖
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where 𝜀𝜀𝑖𝑖𝑖𝑖

𝛽𝛽𝛼𝛼 can be expressed using Eq. 6 as  
 

             𝜀𝜀𝑖𝑖𝑖𝑖
𝛽𝛽𝛼𝛼 =    �𝑤𝑤𝛽𝛽𝛽𝛽𝛽𝛽′
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(ℎ𝑖𝑖
𝛽𝛽𝛼𝛼𝛽𝛽′𝛼𝛼𝑢𝑢𝑖𝑖𝛼𝛼𝛼𝛼 + ℎ𝑖𝑖
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For the sake of brevity, let’s express Eq. 7 in tensor form as  
 

𝜺𝜺𝛽𝛽𝛽𝛽 =   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑩𝑩𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 ⊗ 𝒖𝒖𝛼𝛼𝛼𝛼�,                                            (8) 
 

where 𝐵𝐵𝑖𝑖
𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼=∑ 𝑤𝑤𝛽𝛽𝛽𝛽𝛽𝛽′�𝑄𝑄𝛽𝛽�

𝛽𝛽′ ℎ𝑖𝑖
𝛽𝛽𝛼𝛼𝛽𝛽′𝛼𝛼. 

 

Similarly stress tensor 𝝈𝝈 can be approximated as 𝜎𝜎𝑖𝑖𝑖𝑖(𝒙𝒙) ≈ ∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖
𝛽𝛽𝛼𝛼𝑄𝑄𝛽𝛽𝛼𝛼�𝑄𝑄𝛽𝛽�

𝛼𝛼
𝑁𝑁𝛽𝛽
𝛽𝛽 . The elasticity 

tensor 𝒄𝒄 is also approximated using the characteristic functions of Delaunay tessellation as 
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(𝒙𝒙) ≈ ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼

𝛽𝛽 𝜓𝜓𝛽𝛽(𝒙𝒙)𝑁𝑁𝛽𝛽
𝛽𝛽 . It is straight forward to obtain 𝜎𝜎𝑖𝑖𝑖𝑖

𝛽𝛽𝛼𝛼 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼
𝛽𝛽 𝜀𝜀𝑖𝑖𝛼𝛼

𝛽𝛽𝛼𝛼. 
 
Substituting the Eq. 8 into 𝐿𝐿 in Eq. 4 and setting its first variation to zero (i.e. 𝛿𝛿𝐿𝐿 = 0), the 
following governing matrix equation of HO-PDS-FEM can be obtained.  

 
� 𝒘𝒘𝛽𝛽𝛼𝛼𝛼𝛼′

𝛼𝛼 ′,𝛼𝛼,𝛼𝛼′,𝛽𝛽′

⋅ �𝑩𝑩𝛽𝛽𝛼𝛼𝛼𝛼𝛽𝛽 ⋅ 𝒄𝒄𝛽𝛽 ⋅ 𝑩𝑩𝛽𝛽𝛼𝛼𝛼𝛼′𝛽𝛽′� ⋅ 𝒖𝒖𝛼𝛼′𝛽𝛽′ = 𝟎𝟎                                 (9)  

 
According to the above equation, the element stiffness matrix of HO-PDS-FEM is  
 

𝑲𝑲𝜷𝜷 =  𝒘𝒘𝛽𝛽 ⋅ 𝑩𝑩𝛽𝛽𝛼𝛼𝛼𝛼𝛽𝛽 ⋅ 𝒄𝒄𝛽𝛽 ⋅ 𝑩𝑩𝛽𝛽𝛼𝛼𝛼𝛼′𝛽𝛽′                                                 (10) 
 
Size of this element stiffness matrix depends on the space dimensions and number of basis 
functions used in analyzing the target problem. For example, the size is (6 × |𝑃𝑃𝛼𝛼|) ×
(6 × |𝑃𝑃𝛼𝛼|)  for a 2D Delaunay triangle, and (12 × |𝑃𝑃𝛼𝛼|) × (12 × |𝑃𝑃𝛼𝛼|)  for 3D Delaunay 
tetrahedral.  

 

Modeling brittle crack in HO-PDS-FEM 

Major advantage of PDS-FEM is its simple and efficient treatment for modeling propagating 
discontinuities like cracks. The displacement field approximation 𝑢𝑢𝑖𝑖𝑑𝑑(𝒙𝒙)  is inherent with 
discontinuities along each boundary of Voronoi elements Φ𝛼𝛼  , ∂Φ𝛼𝛼, as a consequence of 



limiting the support of each polynomial base 𝑃𝑃𝛼𝛼𝛼𝛼  to the domain of the corresponding 
tessellation element Φ𝛼𝛼 . Figure 2(a) shows an exaggerated illustration of a displacement 
component approximated with PDS over a Delaunay tessellation. As explained in this sub-
section, HO-PDS-FEM utilizes these existing discontinuities along ∂Φ𝛼𝛼 ’s to numerically 
efficiently model moving discontinuities in BVPs. 
 
The contribution to the strain from the above mentioned discontinuities can be isolated by 
expressing base functions with compact support within each Voronoi as 𝑃𝑃𝛼𝛼𝛼𝛼 = 𝐹𝐹𝛼𝛼𝛼𝛼(𝒙𝒙) 𝜙𝜙𝛼𝛼(𝒙𝒙) 
and substituting to ℎ𝑖𝑖

𝛽𝛽𝛼𝛼𝛽𝛽′𝛼𝛼  in Eq. 6.  

ℎ𝑖𝑖
𝛽𝛽𝛼𝛼𝛽𝛽′𝛼𝛼 =  � 𝑄𝑄𝛽𝛽𝛽𝛽′(𝑃𝑃𝛼𝛼𝛼𝛼),𝑖𝑖

Ψ𝛽𝛽
d𝑠𝑠 

               =   � 𝑄𝑄𝛽𝛽𝛽𝛽′ �(𝐹𝐹𝛼𝛼𝛼𝛼),𝑖𝑖 𝜙𝜙𝛼𝛼 + 𝐹𝐹𝛼𝛼𝛼𝛼𝜙𝜙,𝑖𝑖𝛼𝛼 �d𝑠𝑠
Ψ𝛽𝛽

   

               =     � 𝑄𝑄𝛽𝛽𝛽𝛽′(𝐹𝐹𝛼𝛼𝛼𝛼),𝑖𝑖 𝜙𝜙𝛼𝛼  d𝑠𝑠
Ψ𝛽𝛽

 +  � 𝑄𝑄𝛽𝛽𝛽𝛽′𝐹𝐹𝛼𝛼𝛼𝛼𝑛𝑛𝑖𝑖  d𝑙𝑙
𝜕𝜕Φ𝛼𝛼

                            (11) 

 
In the above equation, the surface integration ∫ 𝑄𝑄𝛽𝛽𝛽𝛽′𝐹𝐹𝛼𝛼𝛼𝛼𝑛𝑛𝑖𝑖  d𝑙𝑙𝜕𝜕Φ𝛼𝛼  carries the contribution to 
strain 𝜀𝜀𝑖𝑖𝑖𝑖 from the above mentioned discontinuities along boundaries αΦ∂ ; note that we have 
used the Gauss divergence theorem. Eliminating this contribution is equivalent to introducing 
a discontinuity to the physical problem by removing the contribution from an infinitesimally 
thin neighborhood along αΦ∂ .  
 
As an example, an opening crack 𝐴𝐴𝐴𝐴𝐴𝐴′ as shown in Fig. 2(b), along the common boundary of 
Voronoi elements Φ1  and Φ2  in Fig. 2(a), can be modelled by simply dropping the 
contributions ∫ 𝑄𝑄𝛽𝛽𝛽𝛽′𝐹𝐹𝛼𝛼𝛼𝛼𝑛𝑛𝑖𝑖  d𝑙𝑙𝐴𝐴𝐴𝐴  and ∫ 𝑄𝑄𝛽𝛽𝛽𝛽′𝐹𝐹𝛼𝛼𝛼𝛼𝑛𝑛𝑖𝑖  d𝑙𝑙𝐴𝐴𝐴𝐴′  while evaluating element stiffness 
matrix 𝑲𝑲𝛽𝛽 of the Delaunay element encompassing the crack surface.  
 

Figure 2. Modeling a mode-I crack 

(a) Discontinuities in the approximated 
displacement field obtained with PDS-FEM 

(b) Mode-I crack 𝐴𝐴𝐴𝐴𝐴𝐴′ is modeled by 
dropping contribution from a thin 
neighborhood of boundary between 
Φ1 and Φ2. 



Most of the existing numerical tools require introduction of additional nodes, enrichment 
functions, etc., subsequently adding substantial numerical overhead and/or complex process. 
On the other hand, higher order PDS-FEM only requires only re-calculation of an element 
stiffness matrix eliminating the contributions ∫ 𝑄𝑄𝛽𝛽𝛽𝛽′𝐹𝐹𝛼𝛼𝛼𝛼𝑛𝑛𝑖𝑖  d𝑙𝑙𝜕𝜕Φ𝛼𝛼  along the required Voronoi 
boundaries αΦ∂ . This very low numerical overhead in modeling cracks is a notable feature 
which makes PDS-FEM one of the most numerically efficient numerical treatment for modeling 
cracks. This is especially useful in simulation of 3D crack propagation in large scale models.  

Numerical examples  

As explained above, a function or vector field approximated with PDS consists of numerous 
discontinuities along each Voronoi boundary. The use of such discontinuous approximations in 
solving BVP is rare and one may doubt about the quality of the solution. In this section some 
numerical examples are presented to demonstrate that PDS-FEM is accurate and higher order 
versions have the expected higher accuracy and convergence rates. A major advantage of PDS-
FEM being the numerical efficient crack treatment, majority of the examples given in this 
sections are to demonstrate the accuracy stationary crack modelled with HO-PDS-FEM.  

 

 
Figure 3 Considered numerical examples with stationary model-I cracks  

Problem setting 

A classical mode-I finite crack in an infinite domain (see Fig. 3(a)) is chosen as a numerical 
example to verify crack tip singularity modelled with HO-PDS-FEM. An arch shape crack 
shown in Fig. 3(b) is analyzed to demonstrate that it can model nearly traction free crack 
surfaces. For all the problems provided in this section, Young’s modulus of 1GPa and Poison’s 
ratio 0f 0.33 are assumed.  
 
Results with two different pairs of base functions sets are compared to demonstrate the 
improvement in accuracy. The first case is with lowest order base functions  𝑃𝑃𝛼𝛼 = {1} and 
𝑄𝑄𝛽𝛽 = {1}, which is referred as 0th-order PDS-FEM.  The other case is with the polynomial bases 
𝑃𝑃𝛼𝛼 = {1, (𝑥𝑥 − 𝑥𝑥𝛼𝛼), (𝑠𝑠 − 𝑠𝑠𝛼𝛼) }  and 𝑄𝑄𝛽𝛽 = {1, �𝑥𝑥 − 𝑥𝑥𝛽𝛽�, �𝑠𝑠 − 𝑠𝑠𝛽𝛽�, �𝑥𝑥 − 𝑥𝑥𝛽𝛽�

2
, �𝑠𝑠 −

𝑠𝑠𝛽𝛽�
2

, (𝑥𝑥 − 𝑥𝑥𝛽𝛽)(𝑠𝑠 − 𝑠𝑠𝛽𝛽)}, which is referred as 1st-order PDS-FEM.   
 

Results and discussion 

Figure 4 shows the stress component along the right half of the crack surface. As seen, in the 
neighborhood of crack tip, HO-PDS-FEM’s solution has a large deviation from the analytical 
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solution. However, 𝜎𝜎𝑦𝑦𝑦𝑦  is in good agreement with analytic solution elsewhere. Moreover, 
higher order PDS-FEM reproduces the traction free crack-surface, which is a significant 
improvement compared to 0th-order PDS-FEM. Analytical solution of this boundary value 
problem is of nature of √𝑟𝑟𝑆𝑆𝑆𝑆𝑛𝑛(𝜃𝜃/2)  and cannot be accurately approximated as a linear 
combination of polynomials. Hence, this significant disagreement in the crack tip neighborhood 
is not unexpected.  
 
The best way to eliminate this large deviation in the crack tip neighborhood is to utilize the 
analytic solution for crack tip stress field as the basis functions of higher order PDS-FEM. 
Another less precise technique is to adjust the point of inflection of polynomial bases in  𝑄𝑄𝛽𝛽 
only for the Delaunay elements encompassing crack tips. It is found that choosing the mid-point 
of Delaunay edge, through which crack enters (see Fig. 5), as the point of inflection of 
polynomial bases in 𝑄𝑄𝛽𝛽  improves crack tip stress field.  

  
 

 
Figure 4   𝝈𝝈𝒚𝒚𝒚𝒚 along the right half of crack line 

Figure 6 compares the results of 0th-order and 1st-order PDS-FEM with analytic solution, when 
point of inflection is moved to the entry point of the crack. As is seen, the results are in good 
agreements with the analytic solution. Also, the crack surface remains nearly traction free, 
which is noteworthy improvement compared to 0th-order (see Fig. 6). Further, Fig. 7 shows the 
J-integral with different number of degrees of freedoms. As is seen, both the accuracy and rate 
of convergence have improved with 1st-order PDS-FEM.  
 
Although the accuracy of crack tip stress filed can be improved using analytical solutions of 
crack tip stress field, the above presented less precise approach by moving the point of inflexion 
is attractive in large scale simulations since it does not increase the numerical overhead. Though 
the use of analytic solution of crack tip stress field as the basis functions improves the accuracy, 
it increases the numerical overhead, leading to load imbalance in parallel computing and lower 
scalability. On the contrary, moving of point of inflexion does not involve any additional 
numerical overhead. 
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Figure 8 compares the tractions, obtained with 0th -order and 1st-order PDS-FEM, along the 
curved crack surfaces in the rectangular plate.  It can be clearly seen that the 1st-order PDS-
FEM can reproduce nearly traction free crack surfaces, and it is a significant improvement 
compares to 0th -order.  

 

(a) 0th-order PDS-FEM                                     (b) 1st-order PDS-FEM 
 

Figure 8 Traction normal to crack surfaces  
 
Unlike most other FEM based crack treatments, PDS-FEM does not emphasizes modeling the 
crack tip and crack surface precisely. Instead PDS-FEM tries model crack tip and surface to a 
sufficient degree of accuracy for practical problems focusing on lower numerical overhead so 
that large scale 3D crack propagation problems can be solved efficiently. However, as shown 
above the crack tip and surfaces modeled with HO-PDS-FEM have a fairly high accuracy and 
convergence rates. The crack surfaces modeled with PDS-FEM. 
 

Uniformly pressured thick hollow cylinder 

A thick cylinder subjected to internal and external pressure is considered to verify the 3D 
implementation of HO-PDS-FEM. Figure 8 illustrates the problem settings. The boundary 
conditions over the top and bottom surfaces are set to reproduce plain strain conditions. In this 
3D problem, the set of polynomial bases used are  𝑃𝑃𝛼𝛼 = {1, (𝑥𝑥 − 𝑥𝑥𝛼𝛼), (𝑠𝑠 − 𝑠𝑠𝛼𝛼),   (𝑧𝑧 − 𝑧𝑧𝛼𝛼)} 
and 𝑄𝑄𝛽𝛽 = {1, �𝑥𝑥 − 𝑥𝑥𝛽𝛽�, �𝑠𝑠 − 𝑠𝑠𝛽𝛽�, �𝑥𝑥 − 𝑥𝑥𝛽𝛽�
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𝑥𝑥𝛽𝛽��𝑧𝑧 − 𝑧𝑧𝛽𝛽�, (𝑠𝑠 − 𝑠𝑠𝛽𝛽)(𝑧𝑧 − 𝑧𝑧𝛽𝛽)}. 
 
Figure 10 compares the analytic solutions and numerical results of radial displacement 𝑢𝑢𝑟𝑟  and 
strain component 𝜀𝜀𝑟𝑟𝑟𝑟  along a radial line. A quick comparison advocates the improvement in 
solution with the mesh refinement, and that the numerical solutions are in good agreement with 
analytic solution. For this specific setting, 𝑢𝑢𝑟𝑟 reaches its maximum at 𝑟𝑟 = 0.2. Figure 11 shows 

Figure 6 𝝈𝝈𝒚𝒚𝒚𝒚 along the right half of crack 
 

Figure 7 Convergence rate of J-integral 



the error of 𝑢𝑢𝑟𝑟 at 𝑟𝑟 = 0.2 for several tessellations with different element sizes. As is seen, the 
error diminishes at second order rate with respect to the number of degrees of freedoms, which 
is the expected. 
 

 
Figure 9 Thick hollow cylinder applied with uniform internal and external pressure 

 
 

 
 

 
Figure 10 Comparison of displacement along radial direction 𝒖𝒖𝒓𝒓 
 
 

 
Figure 11 Convergence rate of the displacement along radial direction  



 

Concluding remarks 

Implementation of higher order PDS-FEM and its application to simulated brittle stationary 
cracks are presented. With numerical example, it is demonstrated that HO-PDS-FEM provides 
higher accuracy and theoretically expected convergence rates. Two major advantages of HO-
PDS-FEM over former 0th-order PDS-FEM are the improvement in the accuracy of crack tip 
stress field and significant reduction in traction along the model-I crack surfaces. Like in the 
former 0th-order implementation, the numerical treatment for modeling cracks with HO-PDS-
FEM also numerically efficient to simulate crack propagation in large scale 3D models.   

References 
[1] Hori, M., Oguni, K., Sakaguchi, H., (2005) Proposal of FEM implemented with particle discretization 

scheme for analysis of failure phenomena, J. of Mech. and Phys. of Solids, 53 681–703.  
[2] Moes, N., Dolbow, J., Belytschko, T., (1999) A finite element method for crack growth without 

remeshing. International Journal for Numerical Methods in Engineering, 46(1) 131-150. 
[3] Gingold, R.A., Monaghan, J.J., (1977) Smoothed particle hydrodynamics: theory and application to non-

spherical stars. Monthly Notices of the Royal Astronomical Society, 181 375–389.  
[4] Schlangen E., Garboczi E.J., (1997) Fracture simulations of concrete using lattice models: computational 

aspects. Engrg. Frac. Mechanics, 57(2) 319–332.  
[5] Wijerathne, M.L.L. , Oguni, K., Hori, M. (2009) Numerical analysis of growing crack problem using 

particle discretization scheme, Int. J. for Numerical Methods in Engineering, 80 46-73. 
[6] Pal, M.K.,  Wijerathne, L,,  Hori, M., Ichimura, T., Tanaka, S. (2014)  Implementation of Finite 

Element Method with higher order Particle Discretization Scheme, J. of Japan Society of Civil 
Engineers, Ser.A2 70(2)  297-305.  

[7] Pal, M.K., Wijerathne, L, Hori, M., Ichimura, T.  (2015), Simulation of cracks in linear elastic solids 
using higher order Particle Discretization Scheme-FEM, J. of Japan Society of Civil Engineers, Ser.A2 
71(2) 327-337 

 
 


	*M.L.L. Wijerathne¹, M.K. Pal2, and M. Hori1
	Abstract
	Keywords: Particle Discretization Scheme, higher order extension, brittle cracks, J-integral

	Introduction
	Higher order PDS
	Modeling brittle crack in HO-PDS-FEM

	Numerical examples
	Problem setting
	Results and discussion
	Uniformly pressured thick hollow cylinder

	Concluding remarks

