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Abstract 

This paper studies the computation of the periodic solutions of delay differential equations. 
By establishing the Poincaré map and considering the phase drift conditions we transform the 
computation of the periodic solution as an optimization problem with constraints. We propose 
a method to get approximately the initial function by function fitting. The results show that 
the proposed method improves the computational efficiency greatly compared to that using 
traditional function interpolation method.  
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Introduction 
The delay differential equation (DDE) is a complex infinite-dimensional system. Most 
systems with delays cannot be solved analytically, and need to be solved by numerical 
method. The periodic solution of the differential equation has extensive applications in many 
fields such as engineering practice, biology, economy and so on. The periodicity problem for 
DDEs is an infinite-dimensional problem because the delay differential equation system is 
defined in an infinite-dimensional space [1-7]. Currently, all known approaches for 
calculating the periodic solutions of the delay equations either use the Fourier series [8, 9] 
approximately locate the periodic solution or use a shooting approach discretizing an initial 
function on the interval. The first approach is quite efficient, but, it does not allow 
determining the stability of the periodic solutions. When applying the second approach, we 
can determine the stability of a periodic solution by computing Floquet multipliers. However, 
the shooting approach is expensive and inefficient when the periodic solution is not strongly 
attractive or unstable. In this paper, we transform the computation of the periodic solution of 
DDEs to the constraint optimization problem. We formulate a least squares function fitting 
method for determining the initial function. Compared with the traditional method, the 
computational complexity is reduced and the computational efficiency is improved.  

Finding the Periodic Solutions of DDEs 
 We study the following system of DDEs with the time delay t : 
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where x is an n-dimensional vector of variables; 0t ³  is the time delay; j  is an initial 
function defined on [ , 0)t- ; ( )F × is a n-dimensional vector-valued function. Let ( )tx j denote 

the solution segment defined by ( ) ( , )tx x tj q j= + , 0t q- £ £ , or in symbols, 



 

( )( ) ([ , 0], )n
tx C Rj q tÎ - , where C is the Banach space of continuous functions mapping the 

interval [ , 0] nRt- ® .  

The computation of the periodic solution of DDES is to find the initial function 
( ), ( 0)j q t q- £ £  and period T  such that ( )Tx j j= , where ( )Tx j is the solution segment 

defined on [ , ]T Tt-  [10, 11]. 

In addition, a periodic solution of DDEs is also determined by the period T . The phase shift 
of any periodic solution is also a periodic solution. So in order to get accurate period, a phase 
condition ( , ) 0s Tj =  is needed to remove the indeterminacy.  

Therefore, to find the periodic solution of (1), we use the following conditions 

( ) 0, ( , ) 0Tx s Tj j j- = = .                                                (2) 

This paper transforms the above conditions into the constraint optimization problem:  
2
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or 
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min ( , , ) min [ ( ) ( , ) ]TJ T x s Tj s j j s j= - + ,                (4) 

where × is 2-norm, and s is the penalty factor. 

The aims of the above optimization problem is to find the initial function j and the period T , 
under the constraint condition ( , ) 0s Tj = , get the minimum value of the function 

2
( )Tx j j- . 

When the time delay is large, Eq. (2) may lose compactness because the phase space of Eq. 
(1) is infinite dimensional. We must consider this system in a finite dimensional space [12].  
The first step of a numerical technique to compute a periodic solution is the discretization of 
the initial function j . We choose grid spacing / ( 1)h Nt= - and N  mesh points 

( 1)i i ht t= - + - . In the general shooting method, one usually uses ij  ( 1,2,...,i N= ) of 
these mesh points to approach to the initial function j  by the interpolation method. But, this 
method is inefficient when the periodic solution is not strongly attractive or unstable. This is 
because in order to approach this periodic solution, we need a lot of ij (N is very large) to 
ensure the validity of the approximation. So, we must compute the N N´ Jacobi matrix when 
the Newton method is used to solve problem (3), and the computational efficient is very low 
especially when N is large. 

In this paper, we do not use the interpolation method, and think that the approximate values 

ij only need to reflect the motion trend of real initial function j , and do not need the initial 

function accurately through ij  in every approximation step. This paper constructs the initial 
function with the least squares function fitting, which the initial function obtained is the best 
approximation of ij  in the sense of energy norm. The process is as follow (Fig. 1.).  
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Assuming that 1{ } m
i ig = is the independent basis vectors, we construct the initial function 
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where 1 2ˆ ( , ,..., )ma a a a= , 1 2( , ,..., )Nj j j j=% . ˆ( )E a can be further expressed as 
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The minimum value of E is meet  
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so 
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Thus, for a linearly independent basis function 1{ } m
i ig = , the unique solution 1{ } m

r ra = of the 
coefficients can be obtained by solving equation (8). 

 

Nj  

3j  4j  

1Nj -  

t-  

1j  

2j  

0  

t  

j  

j  

 

Figure.1 Construction of the initial function, the dotted line is the figure of classic (linear) 
interpolation method and solid lines is the figure by using fitting method 

We use the Gram-Schmidt orthogonalization method to simplify the calculation, where the 
specific calculation details are ignored. The algorithm of commutating the periodic solution of 
the delay equation is as follows: 

Step 0：Given the initial penalty factor 0s > , amplification coefficient 1b > , permissible 
error 1 0e > ， 2 0e > . 



 

Step 1：Select a grid spacing / ( 1)h Nt= - ，and define ( 1)i i ht t= - + - . 

Step 2: Let the initial function value on theN grid points is T
1 2( , ,..., )Nj j j j=% ，and period 

is T . 

Step 3：Construct approximate initial function ( )tj  by least square method, and use an 
integral solver to calculate the approximate solution of Eq. (1) from 0 toT . Save the 
solution ( , , )x t Tj% on [ , ]T Tt- . 

Step 4：Compute the approximate ( , , )i ix t Tj%  as an approximation of ( )Tx j% . 

Step 5：Compute 
2

( , ) ( ) ( , )TJ T x s Tj j j s j= - +% % % % . If 1( , )J Tj e<% ，go to Step 6. 

Otherwise，if ( , )J Tj e>% , use Newton Method to compute the search direction of 
the new iteration and update the initial function value and period. Return to Step 2. 

Step 6：If 2( , )s Ts j e<% , iteration is terminated， T( , )P Tj= % is the approximate optimal 
solution, and go to step 7. Otherwise, make :s sb= and return to Step 2. 

Step 7：Save the initial value and the period, the iteration ends. 

Numerical Results 
An example is the group dynamics of the small world network, whose equation of motion as 
follows [13] 
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Figure. 2. Periodic solutions obtained by solving optimization problems.   

According to the literature [13], when / 2t p< , the positive mthrough the critical value 
* 2 2 2 2( 4 ) (16 )m p t t x= - , the system will admit a Hopf bifurcation and generate periodic 

solution. The period of periodic solution is 4t . We can compute 0.0408m= , 4T = by 
choosing 3x = , 1t = . By applying the optimization method proposed in this paper, we 
randomly select 11 initial function points in [ , 0]t- , and use the third order polynomial as the 
fitting basis function to fit the initial function. The period is selected as 4, and thus the phase 
condition ( , ) 0s Tj =  is automatically satisfied. Figure 2 illustrates the periodic solution 



 
 

 
 

finding by using the proposed method. It is clear that the solution segment ( )Tx j on 
[ , ]T Tt- is very close to the initial function j , and the relative error is  

( ) 0.01351%Te x j j jº - = ， 

which indicates we find the approximate periodic solution.  

For N original approximation of initial function, and m -order fitting basis functions, Table 1 
gives the relative error. For the same fitting basis function m  and different unknown number 
N , the error is almost the same; while for the same unknown number, the increasing of the 
numbers of the fitting basis function reduce obviously the error. However, for the third-order 
or fourth-order fitting basis function, the relative approximation of the calculation can reach 
about 0.01%  for every N. Therefore, we can use low-order fitting basis function and 
relatively few unknowns to get better calculation accuracy. 

Table 1. Relative error for different unknown variables and fitting orders 

Error(%） 11N =  15N =  21N =  31N =  

3m =  0.01351 0.01352 0.01351 0.01351 

4m =  0.01163 0.01163 0.01148 0.01138 

5m =  0.00841 0.00840 0.00836 0.00827 

6m =  0.00540 0.00536 0.00535 0.00533 

The eigenvalue of the operator 2 ( )J Pé ùÑê úë ûis the Floquet multiplier of the periodic solution. 
According to the conclusion of [11], the linearized Poincaré operator of finite time-delay 
systems is compact. The Floquet multiplier is a point range centered around zero and 1m= is 
always a the Floquet multiplier of periodic solution. Based on this conclusion, we compute 
the first four Folquet multipliers of Eq. (9), as shown in Table 2. It can be seen that the results 
in Table 2 are consistent with the above conclusions, and that the largest Floqute multiplier is 
very close to 1, indicating the accuracy of the calculation. 

Table 2. Comparisons of bifurcation points of Floquet multipliers (the first 4) 

 11N =  15N =  21N =  

1m  0.98641 0.99768 0.99813 

2m  0.0510 0.02452 0.01283 

3m  0.00311 0.00120 0.00116 

4m  0.00085 0.00018 0.00013 

Conclusions 
In this paper, we propose a method to compute the periodic solutions of differential equations 
with delay. The delay differential equation is an infinite-dimensional system, so the problem 
of finding its periodic solution is infinite-dimensional problem. The periodic solution of the 
delay equation is different from the periodic solution of the ordinary differential equation, and 
the initial value of the system is defined on [ , ]T Tt- . The computation of the periodic 



 

solution is to find the initial function and period T  such that ( )( ) ( ), 0Tx j q j q t q= - £ £ . 

We consider the phase drift condition of the periodic solution, turn the problem of periodic 
solution into a constrained optimization problem, and give a specific algorithm to solve the 
problem of optimization. The traditional method uses function interpolation to approximate 
the initial function. When the periodic solution is not strongly attractive, the computational 
efficiency is very low.  This paper uses the least squares fitting method to approximate the 
real initial function by a finite initial function value ij . The numerical experiments verify the 
validity of the proposed method. Using the function fitting method proposed in this paper, we 
can obtain the initial function of the periodic solution by a few unknowns and the appropriate 
order fitting function. When the solution of the periodic solution is strongly attracting, the low 
order fitting function is used; when the solution of the periodic solution is weak, or the 
periodic solution is unstable, the high order fitting function is used. The results show that the 
proposed method improves the computational efficiency greatly compared to that using 
traditional function interpolation method.  
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