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Abstract 

In this paper, the topological optimization problem considering the stability and vibration 

characteristics of structure is studied. Firstly, the topology optimization model with the 

minimum structure volume as object is established based on independent, continuous and 

mapping (ICM) method, which subjects to the critical buckling load and frequencies as 

constraints. The filter functions with composite exponential function of elemental mass matrix, 

elemental stiffness matrix and elemental geometric matrix would be introduced, by which the 

three matrixes are updated in iteration putted into the topology optimization of differential 

equation to analyse the design sensitivity and optimize the structure. Secondly, the optimal 

model is conversed into the quadratic programming with the introducing of filter functions, 

Taylor expansion and sensitivity analysis. And then, the mathematical model is solved by dual 

sequence quadratic programming (DSQP) algorithm. Finally, the bisection method is applied 

to reduce searching region of threshold space to find the optimal mapping from “continuous” 

to “discrete”. Numerical examples are given to illustrate the feasibility and efficiency of the 

proposed method. 
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1 Introduction 

The topology optimization of continuum structure can reduce the cost of structure with little 

waste of material, owing to the ability of finding an optimum path transferring load on the 

base structure with given constraints [1][2]. Topology optimization has widely prospect in the 

application of automobile, machinery, aerospace, civil engineering and etc. The representative 

topology optimization methods for continuous structure include homogenization method [3], 

variable density method (including SIMP and RAMP interpolation model) [4]-[5], 

evolutionary structural optimization (ESO) [6], level set method [7], moving morphable 

components(MMC) [8], phase field method [9] etc.The plate/shell structures become more 

and more popular among the engineering designers for simple structure form, and the stability 

and dynamics characteristics of structure are considered as the significant factors for assessing 

the plate/shell structures design [10]-[14]. Therefore, considering buckling and frequency 

constraints is important for the plate/shell topology optimization. 

In this paper, the plate/shell topology optimization model, which takes the critical 

buckling load and natural frequencies as constraints, is established based on independent, 

continuous and mapping (ICM) method. The discrete topology optimization model is 

translated into continuous model with the introduction of composite exponential filter 

function. The sensitivity analysis and first-order Taylor expansion are applied to explicit the 

buckling and frequency constraints, and the optimal model is solved by conversing into the 
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quadratic programming model. Bisection inversion strategy is used to realize the inversion of 

topology variables from “continuous” to “discrete”. 

2 Mathematical model of multi-constraints topology optimization 

2.1 ICM method and CEF filter function 

The filter functions are the key technology of ICM, which realize the mapping of topological 

variables from “discrete” to “continuous” and establish the relationship between the optimal 

model and the topological variables and the physical properties of the element. Here, the 

composite exponential function (CEF) is selected as filter functions to realize the approximate 

transformation of the topological variables from 0/1 to (0, 1]. 
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where   is the given positive constant. 

 

The element volume, stiffness matrix, geometric stiffness matrix, and mass matrix 

, , ,i i i iv    k g m  of i -th element in the optimal process are recognized by the filter functions as 

follows 
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where 0 0 0 0, , ,i i i iv    k g m  represent the initial element volume, stiffness matrix, geometric 

stiffness matrix, mass matrix of i -th element, respectively, and ( ) , ( ) , ( ) , ( )v i k i g i m if t f t f t f t  

are the corresponding filter functions. 

2.2 Establishment of the topological optimization model 

In order to guarantee the optimal structure meeting the requirements of stability and dynamic 

characteristics, the topological optimization model with the minimum structure volume as 

object , which subjects to the buckling load and frequencies constraints, is established. 
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where t  is the vector of topological variables and NE  denotes N -dimensional Euclidean 

space, V  is the total volume of the structure, 
cr1P  and 1P , respectively, present the 1-th 

critical buckling load and lower limit of buckling critical load, l  and 
l

  are the l -th natural 

frequency and lower limit of l -th natural frequency, respectively, L  is the total number of the 

frequency constraints and N  is the total number of elements. 

 

By taking advantage of the relations between the filter functions and physical properties of the 

element, the optimal model (1) can be rewritten as 
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In the process of optimization, the reciprocal variable of the stiffness filter function 

1/ ( )i k ix f t  is introduced as design variable. 

3 Standardization and solution of the optimization model 

3.1 Explicit approximation of buckling constraints 

The finite element method is applied for the mechanical analysis of plate/shell structure. The 

buckling characteristic equation for the linear elastic plate/shell structure is expressed as 

1 1( )  ,  0K G u                                                                         (5) 

where K  and G  denote the structural stiffness matrix and geometric stiffness matrix 

respectively， 1  is the 1-th buckling critical load factor and 1u  represents the corresponding 

eigenvector of 1 . In the linear buckling finite element analysis, the 1  is an important index 

to evaluate the structural buckling performance, which is linearly related to 
cr1P . 

1 1cr1 1 ,   ,P P P P                                                            (6) 

where P  is the given external mechanical load and 1  is the lower limit of 1-th buckling 

critical load factor. Therefore, the critical buckling constraint can be simplified as the 

constraint of buckling critical load factor.  

11 .                                                                               (7) 

Equation (5) shows that the buckling critical load factor is associated to the structural stiffness 

matrix and geometric stiffness matrix. Then the sensitivity analysis and first-order Taylor 

expansion are used to get the explicit equations of the buckling constraint. 
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, . T

1 1 10.5i iU  u k u  and 

T

1 1 10.5i iV  u g u  are the 1-th mode strain energy and geometric strain energy for i -th element, 

respectively, T

1 11
V 


u Gu  is the total geometric strain energy of structure for the 1-th 



buckling mode, which can be obtain from the results of finite element buckling analysis. 

Then the buckling constraints in optimal model (4) can be written as 
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3.2 Explicit approximation of frequencies constraints 

For linear multi-degree of freedom system without considering damping and additional 

dynamic load, the frequency equation of structure can be expressed as follows 

( )  ,l l  0K M p                                                           (10) 

where M  is the mass matrix of structure. l  is the l -th frequency eigenvalue and lp  is the 

eigenvector corresponding l . Considering the relationship between natural frequency l  and 

frequency eigenvalue l  meets 2(2 )l l  , and  0,   0l l
   , the frequency constraints 

equation can be transformed into 

   ( , ) ( 1, , ) ,l k i m i l
f t f t l L                                                        (11) 

where 2(2 )
l l

   is the corresponding lower limit of frequency eigenvalue constraint. 

 

The explicit method of critical buckling load factor is applied to get the explicit function of 

frequency eigenvalue. When the eigenvector is satisfied 
T =1l lp Mp , the frequency eigenvalue 

can be expressed as follows 

( ) ( ) ( )

( )
1 1

1
( ) ( )  ( 1, , ) .

N N
v v v

l l il i ilv
i ii

B x B l L
x

 
 

    x x                               (12) 

where 

1 1/ ( )
( )

/( )

( ) ( ) ( 1)2
( ( ) ),  ( )  .

( 1)( ) ( )

i k i
m k

i m

t t
v m i k i k

il i il il i tv

i mm i k i

f t f t e
B x D U x e

x ef t f t


 




 



 
   



T1

2
il l i lU  p k p  

and 
T1

2
il l i lD  p m p  represent the strain energy and the kinetic energy of -thi  element 

corresponding to the -thj  frequency, respectively.  
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3.3 The standardization of the optimal model 

The second-order Taylor expansion is applied to obtain the approximate explicit function of 

structure volume. Then the model (4) can be translated into the standard quadratic 

programming model. 
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where  
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For the above mathematical model established, the number of design variables is much bigger 

than that of constraints. In order to reduce the number of design variables and improve the 

computational efficiency, the duality theory is introduced to convert the Eq.(15) into dual 

optimization model and dual sequence quadratic programming (DSQP) algorithm is applied to 

solve this optimal model. 

3.4 Bisection inversion strategy 

The optimal results obtained from Eq.(15) have some “continuous” topological variables, 

which affect the mechanical properties of the optimal structure to some degree. Here the 

bisection inversion strategy is applied to bisect threshold space to get a suitable filter 

threshold value to realize the mapping from “continuous” to “discrete”, with the purpose of 

obtaining the optimal discrete structure. 

 

The function g( )T  is defined to indicate the minimum difference between values of 

constraints and those of discrete structure’s mechanical properties when given the filter 

threshold value T . Here the concrete format of equation of g( )T  can be written as follows 

1 1cr1( ) min[( ( ) ) / 100% ,  ( ( ) )/ 100%  ( 1, , ) ] l l l
g T P T P P T l L                  (16) 

The flowchart of the bisection inversion strategy is illustrated as Figure 1 and the convergence 

condition of g( )T  is given as 

0 ( )g T                                                                          (17) 



 

Figure 1. Flowchart of the bisection inversion strategy 

4 Numerical example 

The design region is a plane elastic body with size 320 40 1mm   as shown in Figure 2. The 

Young’s modulus 68890MpaE  , Poisson’s ratio =0.3 , and the density 3=1000kg/m . A 

concentrated mass =2E-3kgM  is attached in the midpoint of the top boundary. The bottom 

boundary is fixed and the concentrated force 1000N is applied at the same position of 

concentrated mass. The basic structure is divided into 60×120 CQUAD4 elements. After 

finite element analysis, the first-order buckling load of the basic structures is 180.76N and 

The first three order frequencies of the basic structure are 

1 2 3236.6Hz, 2213.8Hz, 2332.5Hz     . 1 130NP   is defined as buckling constraint 

and 0.9  ( 1,2,3)ll
l     is defined as frequency constraint. 

 

Figure 2. Design region 

Table 1 gives the optimal results with different kinds of multi-constraints. The intermediate 

results and optimal topology configuration are illustrated in Figure 3. Figures 4 and 5 show 

the iteration history curves of volume and buckling load. 

 

Comparing the optimal results in table 1, it is obvious found that the all the optimal structures 

satisfy the buckling and frequency constraints when different order of frequency constraint is 

given. And Figures 4 and 5 indicate that the processes of iteration are stable convergence. 

Those indicate that the optimization method is effective for solving the multi-constraints 

problem. From Figure 3, it can be found that the optimal structures with 2-th frequency and 3-

th frequency constraints are similar, but all are different from that with 1-th frequency 

constraint. The main reason for this phenomenon is that the magnitudes of 2-th frequency and 
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3-th frequency of basic structure are approximately equivalent, meanwhile, the corresponding 

frequency constraint values are also almost same. 

Table 1. Optimal topology process with different kinds of multi-constraints a Buckling 

& 1-th frequency  b Buckling & 2-th frequency  c Buckling & 3-th frequency 

a 

     
 Step 1 Step 12 Step 23 Step 34 final 

b 

     
 Step 1 Step 12 Step 23 Step 35 final 

c 

     
 Step 1 Step 14 Step 27 Step 40 final 

 

Table 2. Results of topology optimization with different kinds of multi-constraints a 

Buckling & 1-th frequency  b Buckling & 2-th frequency  c Buckling & 3-th frequency 

Constraint type a b c 

Iteration number 34 35 40 

Volume/mm
3
 515.5 531.5 529.2 

Buckling load/N 130.8 130.7 130.8 

1-th frequency /Hz 229.3 223.2 223.2 

2-th frequency /Hz 1643.2 2169.9 2085.1 

3-th frequency /Hz 1647.4 2195.2 2174.3 
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Figure 4. Iterative history curves of 

volume with different kinds of multi-

constraints 

Figure 5. Iterative history curves of 

buckling load different kinds of multi-

constraints 

5 Conclusions 

The plate/shell topology optimization model with minimum structural volume as objective, 

subjected to the critical buckling load and natural frequencies, is investigated in this paper. 

The composite exponential filter functions, Taylor expansion and sensitivity analysis are used 

to make the optimal model explicit and establish the standard quadratic programming model. 

And bisection inversion strategy is applied to realize the intelligent mapping of topological 

variables. The results of example demonstrate that proposed method for plate/shell topology 

optimization with buckling and frequencies constraints is feasible and valid. 
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