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Abstract: Small-on large theory is introduced to analyze the effect of finite deformation on elastic 

wave propagation in periodic lattice structures made from soft material. The buckling pat-
terns varying with loading conditions and the tunability of phononic crystals (PCs) through 
large deformation will be studied in details. 

 
1. Introduction  
Acoustic metamaterials have attracted a lot of attentions due to excellent properties. For pho-
nonic crystals, there might exist certain ranges of frequency (named as band gaps, BGs), in 
which the wave are prohibited to propagate due to the mechanisms of Bragg scattering or lo-
cal resonance (LR)[1]. It is valuable to make the PCs with tunable BGs through external 
stimuli, such as mechanical loading [2, 5], electric fields [3], magnetic fields [4] and so on. 
Recently, soft PCs that can undergo large deformation provide us the opportunities to actively 
control the BGs through reversible finite deformation in versatile manners [3, 6].  
In this work, we will study the buckling patterns and the effects of post-buckling deformation 
on the dynamic properties of elastic wave propagation in soft periodic lattice structures. 
 
2. Governing equations 
The small-on-large theory [6] is introduced to analyze the elastic wave propagation with ini-
tial finite deformation. Denote the coordinate of a particle within a continuum body in the 
reference configuration as X , and it moves to position ( )=x x X in the deformed configura-
tion, so the deformation gradient tensor is ( )= ∂ ∂F x X X  and its determinant

det( ) 0J = >F . The material is assumed to be hyperelastic with strain energy density as: 
( )W W= F , therefore, the nominal stress is: ( )W= ∂ ∂S F F  , and the Cauchy stress is: 

1J −=σ FS ,  provided the material is compressible. In the absence of body force, the equilib-
rium equations under static loading are  
 div 0=σ , (1) 

where div( )� denotes the divergence operator in the deformed configuration. Now we super-
impose an elastic wave with small amplitude ( , )tu x on the previous finite deformation, 
where t  is the time. We note grad ( , )tu x  is small, thus, the perturbation of nominal stress 
caused by elastic wave is: 
 ( )( ) ( ) : grad ( , )t∆ = − ≈S S F S F L F u x � , (2) 

where 2 2( )W= ∂ ∂L F F is the fourth-order material tensor. By neglecting the high order 
terms and introducing the push forward of the perturbation of nominal stress, 1J −= ∆Τ F S , 
the governing equations of wave propagation can be obtained 
 2 2div ( , )t tρ= ∂ ∂T u x , (3) 

where ρ is the material mass density in the deformed configuration.  
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Furthermore, the periodic boundary conditions and Bloch boundary conditions are necessary 
to analyze the finite deformation and waves in periodic structures [2, 5], respectively. 
 
3. Results 

                                              
Figure 1. Lattice structure with 2x2 cells.            Figure 2. Ctrical loading vs. loading ratio. 

Fig. 1 shows the geometry of a lattice structure with 2 2×  cells2 (see [2, 5] for details), 
where l and h  are the length and width of each beam, xλ  and yλ  are the loadings along x 

and y axies, respectivly. Fig. 2 plots the critical loading of yλ for the first and second 
buckling patterns varying with the loading ratio k. It is evident mode ‘C’ shown in Fig. 2 is 
preferable when k  is below 0.8, which is further verified to have indistinctive effects on BGs, 
and should be avoided in the design of tunable PCs. When k  is close to unit (k=1 means the 
equi-biaxial loading condition), mode ‘S’ will be the first buckling mode. The effects of 
compression on BGs marked by red blocks are illustrated in Fig. 3, showing the effectiveness 
to tune the BGs of soft PCs through finite deformation under external mechanical loadings.  
 

                    
        (a) Without compression;  (b) Compression with 10%;         (c) (b) Compression with 10%; 

Fig 3. Effects of compression on BGs under equi-biaxial loading, k=1. 
 
4. Conclusions 
The buckling patterns of periodic lattices made from soft material are found to be dependent 
on the loading ratios, and the case with equi-biaxial loading condition are verified to be effec-
tive to tune the BGs of PCs through the control of compression mechanically. 
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