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Abstract 

Aiming at the problem of low efficiency and time-consuming in topology optimization based 
on element-free Galerkin (EFG) method, a new implementation of topology optimization 
based on EFG method and Graphic Processing Unit (GPU) parallel computing is presented by 
using node-by-node method and interacting nodes pairs to carry out the sensitivity analysis, 
and the corresponding computational formulas are derived. The GPU parallel execution 
model is designed to be used in the sensitivity analysis of objective function and 
implementing of optimization criterion (OC) method, and the flowchart is also given. The two 
examples of topology optimization are achieved, and the results obtained show that the 
proposed method is verified to be efficient and feasible. On the premise that the calculating 
accuracy is met, the 24 times speedup is obtained.  

Keywords: Topology Optimization; GPU; Parallel Computing; EFG method; Sensitivity 
Analysis 

1. Introduction 

Structural topology optimization has played an important role in lightweight design of 
industrial product parts [Zargham et al. (2016); Chen et al. (2016)]. Its numerical methods are 
mainly based on element based method, such as the finite element. The numerical instabilities, 
such as checkerboards, mesh-dependencies and local minima, can occur in application of 
topology optimization because of using element based method [Sigmund O (1998)]. To get 
clear topological outline, the different topology optimization methods or filtering technologies 
have been put forward, such as level set method, evolutionary structural optimization 
method(ESO) , and so on [Zargham et al. (2016)]. 
 
The Element-Free Galerkin (EFG) method requires only nodal data, and the element 
connectivity between nodes is eliminated [Lu et al. (1994)]. As the EFG method has high rate 
of convergence, high computing accuracy and good computing stability, the scholars have 
tried to us it in topology optimization. Gong et al. [2012] has presented the topology 
optimization method based on EFG method by selecting the nodal density as the design 
variables. His research results show that the numerical instabilities in topology optimization 
have significantly improved. The same conclusion has also achieved by authors [Yang et al. 
(2016)]. Despite all this, the EFG method also has some shortcomings that are the EFG 
method has poor computational efficiency and time-consuming [Belytschko et al. (1996)]. For 
this reason, many scholars try to make use of parallel algorithm to improve computing 
efficiency of EFG method. Singh [2004] has researched parallel assembling of stiffness 
matrix and parallel solving of linear equations, and achieved the parallel computing of EFG 
method. Zeng et al. [2008] discussed the parallel computing the shape functions and their 
derivatives of Moving Least Squares method, and his research results show the EFG method 



has large parallel potential and high parallel efficiency.           
 
In particular, as the NVIDIA Company released Compute Unified Device Architecture 
(CUDA) and the Open Compute Language (OpenCL) in recent years, parallel acceleration of 
Graphic Processing Unit (GPU) has received considerable attention. Karatarakis et al. [2013] 
presented the GPU parallel algorithm to assemble stiffness matrix of EFG method. And the 
GPU parallel algorithm of solving linear equations by using conjugate gradient method has 
been presented by authors [Bolz et al. (2003)]. Gong et al. [2015] presented a GPU 
acceleration parallel algorithm of EFG method by using node pair-wise approach to assemble 
the stiffness matrix, the maximum speedup ration is up to 17 times. Stephan et al. [2011] 
investigates the GPU parallel computing of topology optimization with the solid isotropic 
material with penalization approach based on FEM, and they found that the computing 
efficiency of GPU is faster than a 48 core shared memory CPU system. In addition, Challis et 
al. [2014] has carried out the parallel computing of topology optimization with level set 
method based on FEM. They have also found that the GPU is utilized more effectively at the 
higher scale problem. To solve large FE model in topology optimization, Martínez-Frutos et al. 
[2016] has presented a multi-GPU system in terms of memory consumption and processing 
time. Cai et al. [2016] proposed the parallel computing method of Bi-directional Evolutionary 
Structural Optimization (BESO) based on MatLab and GPU. In a word, the GPU parallel 
computing has become a very popular accelerating computational method.  
 
Hence, in this paper, our purpose is to present an entire topology optimization method based 
on the GPU parallel computing and EFG method. The parallel algorithm of sensitivity 
analysis in topology optimization and optimization criterion (OC) method will be explored in 
detail, and the flow chart of GPU parallel computing is given then. The two numerical 
examples are achieved based on the proposed method, and the influence of nodes to speedup 
will be discussed.  

2. Topology optimization based on EFG method 

In this work, we utilize the penalty function method to impose the essential boundary 

condition because the shape functions in the EFG method do not satisfy the Kronecker delta 

property. The minimum structural compliance c  is chosen as the objection function, and the 

volume ratio f  as the constraint, the relative density of nodes I as the design variables, the 

topology optimization model by using Solid Isotropic Material with penalization (SIMP) 

interpolation can is now given as follows.  
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where K is the global stiffness matrix, aK is the global penalty stiffness matrix,F is the global 
force vector. aF   denotes the global penalty force vector, and V represents the material 
volume of design domain, These parameters can be defined as follows, respectively. 
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in which B  is the geometric matrix, D is the elasticity matrix.  is the penalty factor, in 

general,  3 710 ~ 10 E  , and E is the elastic modulus.   denotes the shape function; t  

are the traction forces applied on the natural boundary, b is the body force vector, u  is the 

known displacements on the essential boundary, U  is the approximation nodal displacement, 

and 0V is the initial volume of the design domain. In the meantime, in order to avoid the 

singularity in the optimal process, the lower limiting value of relative density min is set to 

0.001. Meanwhile, the relative density of any node in the design domain is given as follow 
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On the other hand, we select the Optimization Criterion (OC) method [Sigmund (2001)] to 
update the design variables. The iteration scheme is given by 
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where superscript k  is the number of iteration. In order to guarantee the stable of iteration, 

the damping coefficient   and a positive move-limit m are introduced, respectively, and IB  

can be found from the optimality condition as 
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where   is a Lagrange multiplier that can be obtained by a bi-section algorithm.  
 



The sensitivity analysis of the objective function and volume can be expressed as follows, 
respectively. 
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where superscript p  is used as a penalty factor enforcing a 0/1 distribution as intermediate 

values are greatly reduced. 
 
More details on topology optimization based on EFG method in general can reference to the 
literature [Gong et al. (2012); Gong et al. (2009)]. 

3. Implementation of GPU parallel algorithm 

3.1 Date storage and access  
 
NVIDIA’s GPU employing the isolated storage system of multi-level memory is an 
independent computing system, but there exist giant difference in feature of different memory, 
and their location, access permission and life cycle are different. So the rational allocation and 
use of GPU memory in the CUDA architecture is important for improving the performance of 
GPU program, especially topology optimization based on EFG method requires processing 
huge amount of data, and using frequencies and ways between different data are also different. 
Aiming at these problems, we take into account following ways to carry out optimization of 
data storage and access. 
 
1) Subject to the limit of transmission efficiency of the PCI-E port, the data transmission 
bandwidth between CPU and GPU is much less than that of video memory. In order to avoid 
time-consuming in the data transmission, according to the needs of the program design, the 
prepared basic data will be transferred once from CPU to GPU instead of being transferred 
repeatedly, and only the residual error will be returned to CPU for looping control in the each 
iteration process. Finally, the optimization results are also transmitted to the host memory 
after the optimization. 
 
2) The memory capacity of stiffness matrix in the EFG method is much bigger than the 
transitional FEM. Meanwhile, the data including the model data, updated data in the iterative 



can be only stored in the GPU global memory. But the global memory has high access delay, 
and it is easy to become the access bottleneck. In order to achieve the highest access rate, the 
address of the first element in each row of data array is aligned by programming. This 
approach will be beneficial to satisfy the combined access requirements and ensure the 
maximum effective bandwidth. 
 
3) Each adding a processor in the GPU has a cache to speed up reading operation from 
constant memory, and compared with the global memory, the constant memory has smaller 
delay and faster speed for access operation. Hence, for the sake of effectively reducing the 
access to global memory and improving process performance, the constants accessed 
frequently, for example, penalty factor, numerical damping coefficient, material properties, etc, 
will be stored in the constant memory.  
 
4) To take full advantage of the register in the GPU chip, which it has the characteristic of 
high bandwidth, low delay and small capacity, the number of intermediate variables should be 
minimized. If the intermediate variables are overmuch, they should be stored in shared 
memory instead of register, and the registers should be allocated rationally for each thread 
according to the difference task. 
 
3.2 Parallel algorithm of sensitivity analysis 
 
In the conventional computing of topology optimization, the sensitivity analysis of objective 
function can be achieved by looping for integral point. That is to say, first we calculate the 
sensitivity component of all nodes in the influent domain of integral point, and then 
accumulate them by node number to get the sensitivity array. Due to the node may also appear 
in the influent fields of multiple Gauss integral points simultaneously. It means that the 
address of each node in the sensitivity array will be accessed repeatedly, as shown in Fig. 1. 
This way is not suitable for parallel computing because it is easy to lead to the conflicts of 
data storage. Therefore, we present a parallel algorithm to carry out the sensitivity analysis by 
using the interacting nodes pairs that is two nodes in which influence domain between them 
has overlap region [Gong et al. (2015)], as shown in Fig. 2. This parallel scheme adopts 
node-by-node method to circularly develop the sensitivity computing of objective function, 
and the address of node in sensitivity array will be accessed only once. This approach can 
eliminate the conflicts of data storage and be suitable for parallel computing. 
 
Moreover, there exist a lot of the intermediate variables in the traditional calculation. These 
variables will appear in an array form to participate in operation. It will seriously degrade the 
global performance of GPU programs because these variables can only store in global 
memory. Aiming at this problem, by combining the parallel algorithm as shown in Fig. 2, we 
propose a following processing method for the sensitivity computing of objection function. 
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Fig. 1 Assembly the sensitivity matrix   Fig. 2 Assembly the sensitivity matrix  
by looping for integral point        by using node-by-node method 

 

1 T dpLM
I L M

I

p 







 

 
K

B DB                        (6) 

 
In the EFG method, the global stiffness matrix is also banded sparse matrix, and it means that 

the value of the most of 2 2  blocks in
I





K
 is zero. Only the block element value 

corresponding to the interacting nodes pairs of node I  is not zero. So we can obtain the 
following equation according to Eq. (4). 
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where 
T

= ,L Lx Lyu u  u  is the displacement vector of node L , and INP  is the number of 

interacting nodes pairs of node I .  
 
Substituting Eq. (6) into the Eq. (7), we have 
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The Eq. (8) can also be written as 
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where E  is Young’s modulus and   is Poisson’s ratio; H , J are the weight coefficient and 

the Jacobi coefficient of integral point, respectively. ,L x , ,L y denote the derivative for shape 

function L with respect to x and y, respectively.  
 
Although this approach may increase the complexity of programming, it can ensure that most 
of the intermediate variables could be stored in the registers of GPU. And it could be 
beneficial to improve the performance of program. 
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Fig.3 Parallel execution model based on CUDA architecture for the sensitivity of 
objective function 

Synthesizing the above ideas, we present the parallel execution model based on CUDA 
architecture to achieve parallel computing for the sensitivity analysis of objective function, as 
shown in Fig. 3. That is, each thread reads data from the global memory and constant memory, 
and the registers and shared memory is used to store the intermediate variables. And then 
computing the sensitivity value of objective function of each node by using parallel Reduction 
Algorithm [Gong et al. (2015)], and its final results will store in global memory. Meanwhile, 
there are two parallel hierarchies in this algorithm. One or outer loop layer is the computing 
of nodes, that is, each thread blocks will calculate the objective function sensitivity of one 
node. The other or inner loop layer is the integral points in the influence domain of node, and 
each thread in the thread blocks will deal with the computing of an integral point. Finally, we 



can obtain the sensitivity component of this node objective function.  

3.3 Parallel algorithm of OC method 

It shares less time in the whole topology optimization that the OC method is used to update 
the design variables, but to obtain the final optimal result need repeatedly iterate in the 
structural topology optimization. Only if the OC method is implemented in the CPU serial 
computing，a large amounts of data need to be transferred repeatedly between CPU and GPU, 
and it will seriously reduce the effectiveness of other parallel algorithm. On the other hand, 
the computing between each step in the iteration process is a serial operation, but some 
operation including the replacement of design variable, the calculation of the relative density, 
etc, may be a parallel operation in data level. So these operations can also make use of GPU 
to carry out parallel computation. Therefore, according to heterogeneous of CPU and GPU as 
well as the CUBLAS library, we present a parallel algorithm of implementing OC method on 
GPU, and it is controlled by using a sub-function in this paper. Detailed algorithm flow is 
expressed as follows. 
 

1) Initialize the CUBLAS library. 
2) Define the upper limit l1 and lower limit l2 of finite interval in host computer, which 

this interval is used to calculate the Lagrange multiplier by using bisection algorithm, 
and assigning their initial value at the same time. 

3) Copy  1k   to  k  by calling library function cublasDcopy() in CUBLAS library. 

4) while(l2-l1>1.0e-4) 
{ 

4.1) Calculate the Lagrange multiplier ( 1)i   by using bisection algorithm.  

4.2) After updating the Lagrange multiplier, Calculate the design variables ( 1)
( 1)
k
i 
  by 

calling sub-function: rou_Kernel<<<noumnod, 1>>>() where numnod is the total 
number of nodes in the design domain. This sub-function is written according to 
Eq.(2),  and there is a one-to-one mapping between thread block and node, that is, 

each thread block will calculate the density  
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rou_integral_Kernel<<<numq2, 32>>>() that is written according to calculation 

formula of
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, where numq2 is the total number of integral points in design 

domain, and cN is the number of nodes in influence field of integral point. There 



are two parallel hierarchies in this sub-function. One is integral point layer, that is, 
each thread block computes the relative density of an integral point. The other is 
node in influence field of this integral point, that is, there is one-to-one mapping 
between each thread in thread block and node in influence field of this integral 
point. When the relative density component of each node is gained by using 

calculation formula  
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1
k

I i
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, the relative density of integral point can be 

obtained by utilizing Reduction Algorithm to accumulate each component.  

4.4) While Lagrange multiplier is  1i  , calculate the total volume V by calling 

sub-function Vtol_Kernel<<<1, 1024>>>() that is written by using 

expression  1 diniV  
  . In this sub- function, each thread in the thread blocks 

only computes the volume component of a integral point, and the total volume 

 1iV  of design domain can be obtained by accumulating volume component.  

4.5) Judge the size of design domain volume  1iV  . if less than, then l2=  1i  , else 

l1=  1i  .  

} 
5) Clear the environment of CUBLAS library 

6) Return the design variable value of node  
 1

1
k
i



 .  

3.4 Flowchart of parallel algorithm based on GPU 

Combining the above ideas with the traditional topology optimization algorithm based on 
EFG method, in this paper, we propose the heterogeneous parallel program structure of CPU 
and GPU on CUDA framework, and the flowchart of parallel algorithm is shown in Fig.4. The 
CPU is responsible for the main control operation, calculation with shorter time-consuming or 
inconvenient parallel operation, and the final result output, etc. The GPU is responsible for 
iterative calculation, calculation of the shape function and its derivatives, etc, which they are 
the most time-consuming in structural topology optimization.  
 
Meanwhile, the pretreatment in Fig.4 mainly include the following contents and procedure. 

 
1) Set up integral points. 
2) Calculate influence field radius of node and definition field radius of integral point. 
3) Establish the list of integral points in influence field of nodes, and nodes in definition 

field of integral points. 
4) Determine interacting nodes pairs. 
5) Calculate global force vector and global penalty force vector. 

 



 

Fig. 4 Flowchart of GPU parallel algorithm for structural topology optimization  

4 Numerical examples 

The numerical examples are used to verify the feasibility of presented method in this paper, 
and are run on the following hardware and software, which CPU is Intel Core i5-3330 that has 
four physical cores at 3.0GHz, and GPU is the GeForce GTX 660 with 2GB GDDR5 memory, 
the version of CUDA is 3.0, and the operating system is 64 bit WIN 7 system. On the other 
hand, the same parameters are used in the following examples, that is, Penalty factor is 3.0p  , 
volume constraint is 30%, numerical damping coefficient is 0.5  and move-limit is 0.2m  . 

The termination condition of optimal iterative is     1
0.1

k k
I I    . The influence domain 

radius of node Ix is 2.5 times the size of the minimum distance between node Ix and other 

nodes, and the 2 2 Gauss points is assigned in each integration cell. 

4.1 Example I- cantilever beam 

The cantilever beam is a classical topology optimization problem, and its model is shown in 
Fig. 5(a). The cantilever assumed to be in a state of plane stress has characteristic height: 



20mH   and width: 40mL   and is considered to be of unit depth. It is fixed the left side 
and loaded with a point force 1Nt   at the lower of the right side. The design domain is 
discretized by17 32 nodes uniformly distributed, as shown in Fig. 5(b), and is assigned by 
496 integration cells. The elastic property of material is: Young’s modulus 1PaE  , Poisson’ 
ratio 0.3  . 
 

 

t

L

H

(a) (b)

 

Fig. 5 Cantilever beam (a) geometry model,  (b) discrete nodes 

After 22 times of iteration, the program can reach the convergence precision. The 
optimization results obtained by using the GPU parallel algorithm and traditional algorithm 
are shown in Fig. 6, respectively. The figure 6 shows that both of results are good agreement. 
It means that the presented GPU parallel algorithm is feasibility and effective.  
 

(a) (b)  

Fig. 6 Optimization results (a) traditional algorithm, (b) GPU parallel algorithm  

When other parameters remain unchanged, the optimal results under different number of 
nodes can also be obtained by using GPU parallel algorithm, as shown in Fig.7. 
  
In this paper, the speedup is defined as following 
 

CPU

GPU
p

t
s

t
                                     (10) 

 

where CPUt , GPUt denotes for the run time of the traditional computation and parallel 
computation, respectively. The relation between speedup and nodes is shown in Fig.8.  
 
In the case of different nodal spacing, the different topology results can be found in Fig.7, but 
their topological layout is similar. Meanwhile, it also implies that the GPU parallel algorithm 
presented is feasible to find the tiny structure in topological optimization.  
 



The figure 8 shows that the speedup will increase with increasing of the number of nodes, and 
the maximum speedup is reached about 24 times. It is because GPU has a powerful 
floating-point computing power and is very suitable for computing of large scale problems. 
Meanwhile, it also means that the GPU parallel algorithm presented in this paper can 
effectively improve the computing efficiency of topology optimization. 
 

 

Fig. 7 Optimization results of cantilever beam under different number of nodes 

 

Fig.8 Relation between speedup and node 

4.2 Example II-Deep beam with opening hole 

A deep beam model with opening hole is showed in Fig. 9(a). It is subjected to a point 
load 3000kNP  , and Young’s modulus is 20820 MPaE  ; Poisson’s ratio is 0.15  . On the 
other hand, the initial width of this concrete beam is 400mmb  .  The design domain is 
discretized by 545 nodes as shown in Fig. 9(b). 
 
After iterating 20 times, the program reach the convergence precision. The final optimization 
results are shown in Fig. 10. The relation between speedup and number of nodes can be also 
obtained, as shown in Fig.11, and Fig.12 shows the optimal results under different number of 
nodes.  



Figure 10 shows that the result obtained by using GPU parallel algorithm is good agreement 
with one gained by traditional algorithm. When the number of nodes is different, the basic 
topology layout is similar, but tiny structure in topological results can be found in Fig.12. And 
with the increasing of number of nodes, the speedup will also increase, as shown in Fig.11. 
The maximum speedup will reach 22.3 times.  
 

P

 
 

Fig. 9 Deep beam with opening hole  (a) geometry model, (b) distribution of nodes 

 

 

Fig. 10 Optimization result  (a) traditional algorithm, (b) GPU parallel algorithm 

 

Fig.11 Speedup for beep beam model 



 

Fig. 12 Optimization results of beep beam under different number of nodes 

 
Comparing Fig.12 and Fig.8, we can find that both of them are basically the same, and the 
size of speedup is related to the number of node.   
  

5 Conclusions 

In this paper, we present a new implementation of topology optimization based on GPU 
parallel acceleration by using the EFG method to carry out the numerical analysis. Its purpose 
is to reduce the computational cost of topology optimization. The parallel algorithm of the 
sensitivity analysis and OC method is discussed by using node-by-node method and 
interacting nodes pairs, and the corresponding flowchart and thread handling is given, 
respectively. Meanwhile, to improve the whole performance of GPU program and reduce the 
number of intermediate variables, the computational equation of sensitivity analysis for 
objection function is derived, so that the intermediate variables can be stored in the register of 
GPU. The presented method is verified by two numerical examples, and topological layouts 
obtained by using GPU parallel acceleration algorithm are good agreement with that using 
traditional algorithm. By studying on the speedup, it can be seen that the speedup will 
increase with the increase of number of node, and the maximum speedup may reach about 24 
times in our given example. It means that the presented method in this paper is feasible and 
valid, and it can observably save the computation time of topology optimization.  
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