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Abstract 

An approach has been developed to identify the position of voids in structures using 
topological derivative and level set method. The position of voids is identified by solving an 
optimization problem. The level set method is applied in the present approach to represent the 
voids. The topology derivative of the objective function is used to produce voids in the 
problem domain. The shape derivative of the objective function is used to evolve the 
boundary of the voids. This approach has been applied to the voids identification of 
two-dimensional (2D) structures, the examples with multiple voids are considered. The results 
indicate that the voids in structure can be identified effectively by the present algorithm. 
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velocity field 

 

1. Introduction 

Identification of voids in structures has been studied by many researchers [1, 2]. Among these 
identification schemes the solving of forward problems commonly used several parameters to 
explicitly represent the shape and geometry of the voids in structures. If the boundaries of the 
voids are curves or surfaces rather than straight lines, it would need too many parameters to 
describe. So this explicit expression scheme is inefficient for multiple voids identification. 
This disadvantages can be overcame by Level set method [3, 4] that was proposed firstly by 
Osher and Sethian. In the past three decades, level set method has been applied widely to 
structure topological optimization [5, 6] and numerical simulation. It also has been applied to 
several inverse problems [7, 8]. 
 
The limitation of the level set method based on shape derivative is that there is no change of 
topology in the problem domain. The voids can only merge and disappear but cannot split 
when the boundary of the voids evolves. The results may fall into a local minimum which 
corresponding to the initial topology. The topological derivative [9, 10] has been used to solve 
this problem in present paper. The main idea is change the topology of the domain by adding 
a small hole at the points where the topological derivatives are most negative. 

 
The purpose of this paper is to develop an algorithm to identify the position of voids in 



structures using the level set method with topological derivative. In the present algorithm, the 
level set function is used to implicitly represent the location of voids and the FEM is used to 
solving the forward problem. The identification of voids can be transformed into a minimum 
optimization problem, in which the least square errors of displacement field of problem are 
taken as the objective function. Then, the identification problem is solved by minimizing the 
objective function. Displacement and adjoint displacement fields are obtained by solving the 
forward problem using FEM. A velocity field that evolves the level set function is derived by 
analyzing the shape derivative of the objective function. The topological derivative of the 
objective function has been introduced to produce voids every several iterations. Finally the 
location of voids can be obtained by evolving the level set function iteratively. A numerical 
example about voids identification of 2D problem is given to verify the present algorithm. 
 
The outline of this paper is as follows. Section 2 states the forward problem and the shape 
derivative. Section 3 introduces the topological derivative. Section 4 describes the algorithm 
based on the level set method. Section 5 gives the 2D numerical example. Section 6 is the 
conclusion. 

2. Problem statement and shape derivative 

2.1 Problem statement 

The model of forward problem employed in this paper is the linear elasticity problem, which 
can be described by the following state equation 
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where u is the displacement field, ( )e u is the strain tensor, A is the elasticity tensor, g is the 

body force, f is the boundary traction force, n is the outward unit normal vector of the 
boundary, Ω  is the solid domain with a linear isotropic material, the boundary of Ω  is 
made of three parts 
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in which NΓ  is the force boundary, 0Γ  is the free boundary and DΓ  is the displacement 

boundary. 

2.2 Shape derivative 

The identification problem can be transformed into a minimum optimization problem. The 



objective function of this optimization problem is denoted by ( )L Ω . It is defined as the least 

square error form with augmented Lagrange terms. 
 

N

0 D

2
0

1
( ) ( ) ( div( e( )) )dx ( e( ) )ds

e( ) ds ds

m

i i
i

L
Ω Γ

=

Γ Γ

Ω = − + ⋅ − − + ⋅ −

+ ⋅ + ⋅

∑ ∫ ∫

∫ ∫

u u p A u g p A u n f

p A u n λ u
     (3) 

 

where 0iu is the measured displacement field, p and λ is the Lagrange multiplier and is also 

the adjoint displacement field. 
 
Integrating the third term by part, we get 
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Integrating the third term by part again, we get 
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The partial derivative of L , using the form given by Eq. (5), with respect to u in the 
direction θ  is 
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Letting Eq.(6) equal to zero, we get the adjoint equation for the adjoint field p . 
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We also get the adjoint equation for the adjoint field λ . 
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The partial derivative of L , using the form given by Eq. (4), with respect to Ω in the 
direction V  is 
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where κ  is the curvature of boundary, and e( ) e( )h = ⋅ + ⋅u A p n p A u n . Since only the free 

boundary 0Γ  is the identified boundary, Eq. (9) becomes 

 

0

( ) ( e( ) e( ) ) dsL
Γ

∂
= ⋅ − ⋅ ⋅

∂Ω ∫V A u p p g V n                     (10) 

 

3. Topological derivative 

We give a brief review of this method that we shall call topological gradient method. Consider 

an open set 2Ω⊂ R  and a point 0x ∈Ω . Introduce a fixed hole 2w⊂ R , a smooth open 

bounded subset containing the origin. For 0ρ >  we define the translated and rescaled hole 

 

0w x wρ ρ= +                                   (11) 

 
Then we define the perforated domain 
 

\ wρ ρΩ = Ω                                  (12) 

 

In the framework of structural optimization we put Neumann boundary conditions on wρ∂ . 

The objective function ( )L ρΩ  is computed with the elastic displacementuρ , solution of the 

following elasticity problem 
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If the objective function admits the following so-called topological asymptotic expansion for 

small 0ρ >  

 
2 2
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then 0( )TD L x  is called the topological derivative at point 0x . The following result gives the 

expressions of the topological derivative for the least square error ( )L Ω . 
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where λ  and µ  is the Lame constant. At points x where ( )TD L x is negative, we 

introduce holes into the current domain Ω . Since this criterion applies for infinitesimal holes, 
we should not remove too much material. In practice it is better to nucleate holes only at the 
minimum (negative) points of this topological derivative. 

4. Algorithm based on Level set method 

4.1 Level set method 

Consider D  a bounded domain in which all admissible shapes Ω  are included, i.e. DΩ⊂ . 
In numerical practice, the domain D  will be uniformly meshed and we parameterize the 

boundary of Ω  using a level set function. We define this level set function φ  in D  such 

that 
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The evolution of the level set function φ  is governed by the following Hamilton-Jacobi 



transport equation 
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where ( , )nV t x  is the normal velocity of the shape’s boundary. 

 

The choice of the normal velocity nV is based on the shape derivative computed in section 2.2 
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The simplest choice is to take the steepest descent ( e( ) e( ) )nV = ⋅ = − ⋅ − ⋅V n A u p p g  which 

can lead that ( )L∂
∂Ω

V is always negative. 

4.2 Numerical implementation 

The procedure of the identification algorithm is as follow: 
 

1. Initialization of the level set function corresponding to a solid design domain. 
 
2. Iteration until convergence: 
 

(a) Compute the topological derivative through the forward problem and the adjoint 
problem. Then produce voids in the problem domain corresponding to the topological 
derivative. 
 
(b) Compute the shape derivative through the forward problem and the adjoint problem. 
Then update the level set function by taking the shape derivative as the velocity field. 

5. Numerical examples 



 
Fig.1 The configuration of voids identification 

(a) A plate with boundary conditions and loads (b) An objective configuration with three 
circular voids 

 
In this section, examples with multiple voids are given. A plate and the boundary conditions 
are displayed on Fig.1 (a). The domain of plate is a square sheet of size 2×2 with the left edge 
fixed. A uniformly distributed unit load is applied on the right edge of plate. The plate is 
discretized with a rectangular 40×40 mesh. The elastic modulus of solid domain is normalized 
to 1, and the Poisson ratio is 0.3. The node displacements of the whole edge of the plate are 
measured by simulation results of FEM. 
 
The objective configuration of plane plate with three circular voids is given in Fig.1 (b). Fig. 
2 (a-e) shows the corresponding identification process. In Fig. 2 (f), the dotted line represents 
the objective voids that to be identified, and the solid lines represent the identified boundary 
which will evolve during the identification process. It can be seen that the boundary gradually 
converges to the objective shape with the increase of iteration number, and finally the 
identification voids are in good agreement with the objective voids. 



 
Fig.2 Iteration process of voids identification 

6. Conclusions 

In the present paper, an identification algorithm coupled with level set method and topological 
derivative is developed to identify the voids in structures. This algorithm is an optimization 
process. The level set method is used to represent the boundary of voids. FEM is used to solve 
the forward problem. The level set function is update by the velocity field which corresponds 
to the shape derivative of the objective function. The topological derivative of the objective 
function is computed to add voids to the problem domain every several iterations. From the 
identification results of 2D plane plate with multiple voids, it is indicated that the present 
algorithm can effectively identify the position of voids in structures. 
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