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Abstract

In this paper, we present a new two-point fourth-order Jarratt-type scheme based on
Hansen-Patrick’s family for solving nonlinear equations numerically. In terms of compu-
tational cost, each method of the proposed class requires only three functional evaluations
(viz. one evaluation of function and two first-order derivatives) per full step to achieve op-
timal fourth-order convergence. Moreover, the local convergence analysis of the proposed
methods is also given using hypotheses only on the first derivative and Lipschitz con-
stants. Furthermore, the proposed scheme can also determine the complex zeros without
having to start from a complex initial guess as would be necessary with other methods.
Numerical examples and comparisons with some existing methods are included to confirm
the theoretical results and high computational efficiency.

Keywords: Nonlinear equations, Jarratt-type methods, Kung-Traub conjecture, Local
Convergence

Introduction

The construction of fixed point iterative methods for approximating simple zeros of a
real valued function is an important task in theory and practice, not only in applied
mathematics, but also for many applied scientific branches. In this paper, we consider
iterative methods for solving a nonlinear equation of the form

f(x) = 0, (1)
where f : D ⊆ R → R is a scalar function defined on an open interval D. Analyti-
cal methods for solving such equations are almost non-existent and therefore, it is only
possible to obtain approximate solutions by relying on numerical methods based on it-
erative procedure. One of the most famous and basic tool for solving such equations is
the Newton’s method [18] given by xn+1 = xn − f(xn)

f ′(xn) , n ≥ 0. It converges quadratically
for simple roots and linearly for multiple roots. In order to improve its local order of
convergence, many higher-order methods have been proposed and analyzed in [1, 4, 19].
One such well-known scheme is the classical cubically convergent Hansen-Patrick’s family
[6] defined by

xn+1 = xn −
[

β + 1
β ± {1− (β + 1)Lf (xn)}1/2

]
f(xn)
f ′(xn) , (2)



where Lf (xn) = f ′′(xn)f(xn)
f ′2(xn) and β ∈ R\{−1}. This family includes Ostrowski’s square-root

method for (β = 0), Euler’s method for (β = 1), Laguerre’s method for
(
β = 1

ν−1 , ν 6= 1
)

and as a limiting case, Newton’s method. Despite the cubic convergence, this scheme
is considered less practical from a computational point of view because of the expensive
second-order derivative evaluation. This fact motivated many researchers to investigate
the idea of developing multipoint iterative methods for solving nonlinear equations.

Multipoint iterative methods [13, 14] for solving nonlinear equations are of great
practical importance since they circumvent the limitations of one-point methods regarding
the convergence order and computational efficiency. The main objective in the construc-
tion of the new iterative methods is to obtain the maximal computational efficiency. In
other words, the aim is to attain convergence order as high as possible with fixed number
of functional evaluation per iteration. According to the Kung-Traub conjecture [18], the
order of convergence of any multipoint method without memory requiring d functional
evaluations per iteration, cannot exceed the bound 2d−1, called the optimal order. Con-
sequently, convergence order of an optimal iterative method without memory consuming
three functional evaluations cannot exceed four. Also, efficiency of an iterative method
is measured by the efficiency index [18] defined as E = p

1
d , where p is the order of con-

vergence. King’s family [10], Ostrowski’s method [18] and Jarratt’s method [7, 12] are
the well-known fourth-order multipoint methods without memory. The Jarratt method
is widely considered and applied for its computational efficiency.

The fourth-order Jarratt’s method which uses one evaluation of the function and two
evaluations of the first derivatives is defined by

xn+1 = xn − Jf (xn) f(xn)
f ′(xn) , (3)

where Jf (xn) = 3f ′(yn)+f ′(xn)
6f ′(yn)−2f ′(xn) and yn = xn− 2

3
f(xn)
f ′(xn) . It satisfies the following error equation

en+1 =
(
c3

2 − c2c3 + c4

9

)
e4
n +O(e5

n).

Recently, Soleymani et al. [16] proposed two-point fourth-order Jarratt-type methods for
obtaining simple roots of nonlinear equations, which are defined as follow:

yn = xn −
2
3
f(xn)
f ′(xn) ,

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(yn)

[(
1 +

(
f(xn)
f ′(xn)

)3
)(

2− 7
4
f ′(yn)
f ′(xn) + 3

4

(
f ′(yn)
f ′(xn)

)2)]
,

(4)

and its error equation is given by

en+1 = 1
9
(
−9 + 33c3

2 − 9c2c3 + c4
)
e4
n +O(e5

n),

and

yn = xn −
2
3
f(xn)
f ′(xn) ,

xn+1 = xn −
f(xn)

2

[
1

f ′(xn) + 1
f ′(yn)

] [(
1 +

(
f(xn)
f ′(xn)

)4
)(

1− 1
4

(
f ′(yn)
f ′(xn) − 1

)

+1
2

(
f ′(yn)
f ′(xn) − 1

)2)]
,

(5)



where it satifies the following error equation

en+1 =
(79

27c
3
2 − c2c3 + c4

9

)
e4
n +O(e5

n).

In [9], Khattri and Abbasbandy proposed an optimal fourth-order variant of Jarratt’s
method using one function evaluation and two first-order derivatives, which is defined as
follows: 

yn = xn −
2
3
f(xn)
f ′(xn) ,

xn+1 = xn −
[
1 + 21

8
f ′(yn)
f ′(xn) −

9
2

(
f ′(yn)
f ′(xn)

)2
+ 15

8

(
f ′(yn)
f ′(xn)

)3
]
f(xn)
f ′(xn) .

(6)

It satisfies the following error equation

en+1 = 1
9
(
85c3

2 − 9c2c3 + c4
)
e4
n +O(e5

n).

In this work, we are interested in designing a new two-point fourth-order class of iter-
ative methods from a view point of Hansen-Patrick type methods, which does not require
any second-order derivative evaluation for obtaining simple roots of nonlinear equations.
Each method requires only one evaluation of the given function and two evaluations of the
first-order derivative per iteration. It is also observed that the body structures of our pro-
posed methods are simpler than the existing two-point fourth-order methods mentioned
above. We also present the local convergence analysis of the proposed methods using hy-
potheses only on the first-order derivative and Lipschitz constants. Moreover, it is shown
by way of illustration that the proposed schemes can determine the complex zeros without
having to start from a complex number as would be necessary with other methods. It can
be easily seen that the proposed schemes are highly efficient in multi-precision computing
environment.

Uni-parametric family of Jarratt-type methods

In this section, we intend to develop a new optimal class of fourth-order Hansen-Patrick
type methods, not requiring the computation of second-order derivative. For this purpose,
let

yn = xn − αu(xn), (7)

where u(xn) = f(xn)
f ′(xn) and α is non-zero real parameter. Now, expanding f ′(yn) = f ′(xn −

αu(xn)) about a point x = xn by Taylor series expansion, we have f ′(yn) ≈ f ′(xn) −
αu(xn)f ′′(xn), which further yields

f ′′(xn) ≈ f ′(xn)− f ′(yn)
αu(xn) . (8)

Using this approximate value of f ′′(xn) in formula (2), and using weight function tech-
nique in the second step, we obtain a modified family of methods free from second-order
derivative as follows:





yn = xn − α
f(xn)
f ′(xn) , α ∈ R\{0},

xn+1 = xn −
f(xn)
f ′(xn)

 β + 1

β +
{

1− (β + 1)L∗f (xn)
} 1

2

H(τ),
(9)

where β ∈ R, L∗f (xn) = f ′(xn)−f ′(yn)
αf ′(xn) and H : R → R is a real variable weight function

with τ = f ′(yn)
f ′(xn) = 1 +O(en). Theorem 1 illustrates that under what conditions on weight

function, convergence order of the family (9) will arrive at the optimal level four.

Convergence analysis
Theorem 1 Assume that function f : D ⊆ R→ R is sufficiently differentiable and has a
simple zero x∗ ∈ D. If an initial guess x0 is sufficiently close to x∗ ∈ D, then the iterative
scheme defined by (9) has optimal fourth-order convergence when

α = 2
3 , H(1) = 1, H ′(1) = 0, H ′′(1) = − 9

16 (β − 1) , |H ′′′(1)| <∞, (10)

where β ∈ R. It satisfies the following error equation

en+1 =
[(

2 + 32
81H

′′′(1)− 3β
2 −

β2

2
)
c3

2 − c2c3 + c4

9

]
e4
n +O(e5

n). (11)

Proof Let en = xn − x∗ be the error at nth iteration and ck = 1
k!
f (k)(x∗)
f ′(x∗) , k = 2, 3, . . . .

Taking into account that f(x∗) = 0, we can expand f(xn) and f ′(xn) about xn = x∗ with
the help of Taylor’s series expansion. Therefore, we get

f(xn) = f ′(x∗)
(
en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5

n)
)
, (12)

and
f ′(xn) = f ′(x∗)

(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5

n)
)
. (13)

From (12) and (13), we obtain

f(xn)
f ′(xn) = en − c2e

2
n +

(
2c2

2 − 2c3
)
e3
n +

(
−4c3

2 + 7c2c3 − 3c4
)
e4
n +O(e5

n). (14)

Using (14) in the first step of (9), we get

yn = xn − α
f(xn)
f ′(xn) = (1− α)en + αc2e

2
n − 2

(
α
(
c2

2 − c3
))
e3
n + α

(
4c3

2 − 7c2c3 + 3c4
)
e4
n

+O(e5
n).

(15)
Again, by using the Taylor series, we can easily get the following expansion of f ′(yn)
around simple zero x∗:

f ′(yn) = f ′(x∗)
(
1 + 2(1− α)c2en +

(
2αc2

2 + 3(1− α)2c3
)
e2
n +

(
−4αc2

(
c2

2 − c3
)

+6(1− α)αc2c3 + 4(1− α)3c4
)
e3
n +

(
3
(
α2c2

2 − 4(1− α)α
(
c2

2 − c3
))
c3

+12(1− α)2αc2c4 + 2αc2
(
4c3

2 − 7c2c3 + 3c4
)

+ 5(1− α)4c5
)
e4
n +O(e5

n)
)
.

(16)



Using equations (13) and (16), we obtain β + 1

β +
(
1− (β+1)(f ′(xn)−f ′(yn))

αf ′(xn)

)1/2

 f(xn)
f ′(xn) = en + 1

2
(
−c2

2 + βc2
2 + 2c3 − 3αc3

)
e3
n

+ 1
2
(
2c3

2 − 3βc3
2 + β2c3

2 − 6c2c3

+6αc2c3 + 6βc2c3 − 3αβc2c3

+6c4 − 12αc4 + 4α2c4
)
e4
n +O(e5

n),

(17)

and

τ = f ′(yn)
f ′(xn) = 1− 2 (αc2) en + 3

(
2αc2

2 − 2αc3 + α2c3
)
e2
n − 4

(
4αc3

2 − 7αc2c3

+3α2c2c3 + 3αc4 − 3α2c4 + α3c4
)
e3
n +O(e4

n).
(18)

Since, it is clear from (18) that τ − 1 is of order O(en). Therefore, we can expand the
weight function H(τ) in the neighborhood of one using Taylor series expansion up to
third-order terms as follows:

H(τ) = H(1) +H ′(1)τ + 1
2!H

′′(1)τ 2 + 1
3!H

′′′(1)τ 3 +O(τ 4). (19)

Using equations (12)-(19) in scheme (9), we obtain the following error equation

en+1 = (1−H(1))en + 2αH ′(1)c2e
2
n +

4∑
s=3

Rse
s
n, (20)

where Rs = Rs (c2, c3, c4, α, β,H(1), H i(1)) for i = 1, 2, 3.
From (20), it is clear that by inserting the following values:

H(1) = 1, H ′(1) = 0, (21)

we obtain atleast third-order convergence. Further, using (21) into R3 = 0, we obtain two
independent relations as follows:

4α2H ′′(1) + β − 1 = 0, 3α− 2 = 0, (22)

which implies
α = 2

3 , H
′′(1) = − 9

16 (β − 1) . (23)

Finally, using the above equations (21), (23) in (20), we obtain the following error equation

en+1 =
((

2 + 32
81H

′′′(1)− 3β
2 −

β2

2
)
c3

2 − c2c3 + c4

9

)
e4
n +O(e5

n).

This reveals that the modified family of Hansen-Patrick type methods (9) attains
fourth-order convergence requiring only three functional evaluations, viz., f(xn), f ′(xn)
and f ′(yn), per step.



Finally, by using (10) in (19), we get

H(τ) = 1− 1
2!

{ 9
16 (β − 1)

}
τ 2 + 1

3!H
′′′(1)τ 3, τ = f ′(yn)

f ′(xn) . (24)

For the sake of simplicity, we take H ′′′(1) = 0 and get a wide general class of Hansen-
Patrick type methods defined by

yn = xn −
2
3
f(xn)
f ′(xn) ,

xn+1 = xn −
f(xn)
f ′(xn)

 β + 1

β +
{

1− (β+1)(f ′(xn)−f ′(yn))
αf ′(xn)

} 1
2

1− 9(β − 1)
32

(
f ′(yn)
f ′(xn)

)2
 .

(25)
It satisfies the following error equation

en+1 =
((

2− 3β
2 −

β2

2
)
c3

2 − c2c3 + c4

9

)
e4
n +O(e5

n). (26)

It is interesting to note that for β = 1 in (25), we get optimal fourth-order method
proposed by Kou [11].

Special cases

In this section, we discuss some interesting special cases of our proposed scheme (9) based
on different forms of weight function H(τ). In the forementioned cases, it can be easily
checked that weight function H(τ) satisfies all the conditions of Theorem 1.
Case 1. Let us consider the following weight function

H(τ) = 1
1 + δ1(τ − 1)2 , (27)

where δ1 = 9
32(β − 1).

It is straight forward to see from above that the weight function has one free dispos-
able parameter, namely β. Therefore, for different particular values of β, we get various
optimal fourth-order Hansen-Patrick type methods but some of the important cases are
described in Table 1.

Case 2. Now, we consider the following weight function

H(τ) = 1 + δ3(τ − 1) + δ1(τ − 1)2

1 + δ4(τ − 1) + 2δ1(τ − 1)2 , (28)

where δ1 is defined by (27) and δ3, δ4 are free disposable parameters.
Particular sub-case of (28):
For δ3 = 3

2 and δ4 = 1
2 , weight function reads as:

H(τ) = 32 + 48(τ − 1) + (25− 9β)(τ − 1)2

16(2 + 3(τ − 1) + (τ − 1)2) . (29)

Similarly, by varying free parameter β, we obtain various cases but some of the important
cases are displayed in Table 2.



Case 3. Now, we consider the following weight function

H(τ) = 1 + δ2(τ − 1)
1 + δ2(τ − 1) + δ1(τ − 1)2 , (30)

where δ1 is defined by (27) and δ2 is any free disposable parameter.
Particular sub-case of (30):
For δ2 = 1, weight function reads as:

H(τ) = τ

τ + δ1(τ − 1)2 . (31)

Hence, by varying free parameter δ1, one can get several different cases but some of the
important cases are displayed in Table 3.

Table 1: Sub-cases of weight function (27) and their error equations

S.No Particular values of β Sub-cases and their error equations

1. β = 0 H(τ) = 1
1− 9

32 (τ−1)2 ,

(Ostrowski’s square-root type) en+1 = (2c3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

2. β = 1
2 H(τ) = 1

1− 9
64 (τ−1)2 ,

(Laguerre’s type) en+1 = (9
8c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

3. β = 3
4 H(τ) = 1

1− 9
128 (τ−1)2 ,

(Laguerre’s type) en+1 = (19
32c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

Table 2: Sub-cases of weight function (29) and their error equations

S.No Particular values of β Sub-cases and their error equations

1. β = 0 H(τ) = H(τ) = 1+ 3(τ−1)
2 + 25(τ−1)2

32
1+( 3

2 + (τ−1)
2 )(τ−1)

,

(Ostrowski’s square-root type) en+1 = (c3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

2. β = 1
2 H(τ) = H(τ) = 1+ 3(τ−1)

2 + 41(τ−1)2
64

1+( 3
2 + (τ−1)

2 )(τ−1)
,

(Laguerre’s type) en+1 = (5
8c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

3. β = 3
4 H(τ) = H(τ) = 1+ 3(τ−1)

2 + 73(τ−1)2
128

1+( 3
2 + (τ−1)

2 )(τ−1)
,

(Laguerre’s type) en+1 = (11
32c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).



Table 3: Sub-cases of weight function (31) and their error equations

S.no Particular values of β Sub-cases and their error equations

1. β = 0 H(τ) = τ
τ− 9

32 (τ−1)2 ,

(Ostrowski’s square-root type) en+1 = (4
3c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

2. β = 1
2 H(τ) = τ

τ− 9
64 (τ−1)2 ,

(Laguerre’s type) en+1 = (19
24c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

3. β = 3
4 H(τ) = τ

τ− 9
128 (τ−1)2 ,

(Laguerre’s type) en+1 = (41
96c

3
2 − c2c3 + c4

9 )e4
n +O(e5

n).

Local convergence

The local convergence analysis of method (9) was based in the previous sections on Taylor
expansions and hypotheses reaching atleast the fifth derivative of function f . These
hypotheses restrict the applicability of method (9).

As a motivational example, define function f on D = [−1
2 ,

5
2 ] by

f(x) =

x3 ln x2 + x5 − x4, x 6= 0,
0, x = 0.

Choose x∗ = 1. We have that

f ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,
f ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x,
f ′′′(x) = 6 ln x2 + 60x2 − 24x+ 22.

Then, obviously, function f ′′′ is unbounded on D. Notice that, in particular there is a
plethora of iterative methods for approximating solutions of nonlinear equations. These
results show that if initial point x0 is sufficiently close to the solution x∗, then the sequence
{xn} converges to x∗. But how close to the solution x∗, the initial guess x0 should
be? These local results give no information on the radius of convergence ball for the
corresponding method. We address this question for method (9). The same technique
can be used to other methods.

In particular, we use only hypotheses on the first derivative to show the local conver-
gence of method (9) and Lipschitz constants.

Let L0 > 0, L > 0, M ≥ 1, α ∈ R\{0} and β > 0 be given parameters. Define
function g1 on the interval [0, 1

L0
) by

g1(t) = Lt+ 2|1− α|M
2(1− L0t)

,

and parameters r1 and rA by

r1 = 2(1− |1− α|M)
2L0 + L



and
rA = 2

2L0 + L
.

Suppose that
M |1− α| < 1. (32)

By (32) and the preceding definitions

0 < r1 < rA <
1
L0
,

g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1).
Moreover, define functions p and hp on the interval [0, 1

L0
) by

p(t) = |β + 1
α
|L0(1 + g1(t))t

1− L0t

and
hp(t) = p(t)− 1.

We have that hp(0) = −1 < 0 and hp(t)→ +∞ as t→ 1−
L0
. It follows from intermediate

value theorem that function hp has zeros in the interval (0, 1
L0

). Denote by rp the smallest
such zero.
Let ϕ : [0, 1

L0
)→ [0,+∞) be a continuous function. Furthermore, define functions g2 and

h2 on the interval [0, 1
L0

) by

g2(t) = 1
2(1− L0t)

(
Lt+ 2L0M(1 + β)(1 + g1(t))t

β|α|(1− L0t)
+ 2M(1 + β)

β
ϕ(t)

)
t,

and h2(t) = g2(t)− 1.
Then, again we have that h2(0) = −1 < 0 and h2(t)→ +∞ as t→ 1−

L0
. Denote by r2

the smallest zero of function h2 in the interval (0, 1
L0

). Set

r = min{r1, rp, r2}. (33)

Then, we have that
0 < r < rA, (34)

0 ≤ g1(t) < 1, (35)
0 ≤ p(t) < 1, (36)

and
0 ≤ g2(t) < 1 (37)

for each t ∈ [0, r).
Let U(w, ρ) and Ū(w, ρ) denote, respectively the open and closed balls in R with center

w ∈ R and of radius ρ > 0. Next, we present the local convergence analysis of method (9)
using the preceding notation.

Theorem 2 Let f : D ⊆ R → R be a differentiable function. Suppose that there exist
x∗ ∈ D and L0 > 0 such that for each x ∈ D

f(x∗) = 0, f ′(x∗) 6= 0, (38)



and
|f ′(x∗)−1(f ′(x)− f ′(x∗))| ≤ L0|x− x∗|. (39)

Moreover, suppose that for each x, y ∈ D1 := D ∩ U
(
x∗, 1

L0

)
there exist α ∈ R\{0}, L >

0, β > 0,M ≥ 1 and a continuous nondecreasing function ϕ : [0, 1
L0

)→ [0,+∞) such that

M |1− α| < 1,

|f ′(x∗)−1(f ′(x)− f ′(y))| ≤ L|x− y|, (40)
|f ′(x∗)−1f ′(x)| ≤M, (41)
|H(τ)− 1| ≤ ϕ(|x− x∗|), (42)

and
Ū(x∗, r) ⊆ D, (43)

where the radius of convergence r is defined by (33) and τ = f ′(x)−1f ′(x−αf ′(x)−1f(x)).
Then, the sequence {xn} generated for x0 ∈ U(x∗, r)\{x∗} by method (9) is well defined,
remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to the solution x∗. Moreover,
the following estimates hold

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| ≤ |xn − x∗| < r (44)

and
|xn+1 − x∗| ≤ g2(|xn − x∗|)|xn − x∗| ≤ |xn − x∗|, (45)

where the “g” functions are defined previously. Furthermore, for q ∈ [r, 2
L0

), the limit
point x∗ is the only solution of equation f(x) = 0 in D2 := D ∩ U(x∗, q).

Proof The estimates (44) and (45) shall be shown using mathematical induction. By
hypothesis x0 ∈ U(x∗, r)-{x∗} and (39), we have that

|f ′(x∗)−1(f ′(x0)− f ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (46)

Using (46) and the Banach lemma on invertible functions [2, 3, 15, 17, 18], we get that
f ′(x0) 6= 0,

|f ′(x0)−1f ′(x∗)| ≤ 1
1− L0|x0 − x∗|

(47)

and y0 is well defined by the first substep of method (9) for n = 0. We can write by (38)
that

f(x0) = f(x0)− f(x∗) =
∫ 1

0
f ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (48)

Notice that |x∗ + θ(x0 − x∗)− x∗| = θ|x0 − x∗| < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then,
by (41) and (48), we get that

|f ′(x∗)−1f(x0)| ≤M |x0 − x∗|. (49)

Then, using (33), (35), (38), (40), (47) and (49), we obtain in turn that
|y0 − x∗| = |x0 − x∗ − f ′(x0)−1f(x0) + (1− α)f ′(x0)−1f(x0)|

≤ |f ′(x0)−1f ′(x∗)||
∫ 1

0
f ′(x∗)−1

(
f ′(x∗ + θ(x0 − x∗))− f ′(x0)

)
(x0 − x∗)dθ|

+ |1− α||f ′(x0)−1f ′(x∗)||f ′(x∗)−1f(x0)|

≤ L|x0 − x∗|2

2(1− L0‖x0 − x∗‖)
+ |1− α|M |x0 − x∗|

1− L0|x0 − x∗|
= g1(|x0 − x∗|)|x0 − x∗| ≤ |x0 − x∗| < r,

(50)



which shows (44) for n = 0 and y0 ∈ U(x∗, r). By (33), (36), (47) and (50), we have that

|(β + 1)L∗f (x0)| ≤ |β + 1
α
| 1
1− L0|x0 − x∗|[

|f ′(x∗)−1(f ′(x0)− f ′(x∗))|+ |f ′(x∗)−1(f ′(y0)− f ′(x∗))|
]

≤ |β + 1
α
|
L0
(
|x0 − x∗|+ |y0 − x∗|

)
1− L0|x0 − x∗|

≤ |β + 1
α
|L0(1 + g1(|x0 − x∗|))|x0 − x∗|

1− L0|x0 − x∗|
= p(|x0 − x∗|) < p(r) < 1.

(51)

In view of (51), 1− (β + 1)L∗f (x0) ≥ 0. Hence, x1 is well defined by the second substep of
method (9) for n = 0. Then, we can write

x1 − x∗ = x0 − x∗ − f ′(x0)−1f(x0) + f ′(x0)−1f(x0)
[
1− β + 1

β +
√

1− (β + 1)L∗f (x0)

]

+ f ′(x0)−1f(x0)
[
H(τ)− 1

] β + 1
β +

√
1− (β + 1)L∗f (x0)

.

(52)

Then, using (33), (37), (42), (47), (49), (50), (51), (52) and the triangle inequality, we get
in turn that

|x1 − x∗| ≤ |x0 − x∗ − f ′(x0)−1f(x0)|+ |f ′(x0)−1f ′(x∗)||f ′(x∗)−1f(x0)|

|
(β + 1)L∗f (x0)

(β +
√

1− (β + 1)L∗f (x0))(1 +
√

1− (β + 1)L∗f (x0))
|

+ |f ′(x0)−1f ′(x∗)||f ′(x∗)−1f(x0)|| (β + 1)
β +

√
1− (β + 1)L∗f (x0)

|ϕ(|x0 − x∗|)

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
+ ML0(1 + β)(1 + g1(|x0 − x∗|))|x0 − x∗|2

(1− L0|x0 − x∗|)2β|α|

+ M(β + 1)ϕ(|x0 − x∗|)|x0 − x∗|
|β|(1− L0|x0 − x∗|)

= g2(|x0 − x∗|)|x0 − x∗| ≤ |x0 − x∗| < r,

(53)

which shows (45) for n = 0 and x1 ∈ U(x∗, r).
The rest of the proof for estimates (44) and (45) follows using induction by simply

replacing x0, y0, x1 by xn, yn, xn+1 in the preceding estimates. Then, from the estimate

|xn+1 − x∗| ≤ c|xn − x∗| ≤ |xn − x∗| < r, c = g2(|x0 − x∗|) ∈ [0, 1),

we deduce that lim
n→∞

xn = x∗ and xn+1 ∈ U(x∗, r). Finally, to show the uniqueness part,
let Q =

∫ 1
0 f
′(x∗+ θ(y∗−x∗))dθ with f(y∗) = 0 and y∗ ∈ D2. In view of (39), we get that

|f ′(x∗)−1(Q− f ′(x∗))| ≤ L0

∫ 1

0
|y∗ + θ(x∗ − y∗)− x∗|

≤ L0

∫ 1

0
(1− θ)|(x∗ − y∗)|dθ = L0

2 q < 1.
(54)

Hence, Q 6= 0. Then, in view of the identity 0 = F (x∗)− F (y∗) = Q(x∗ − y∗), we deduce
that x∗ = y∗.



Remark 0.1 1. It follows from (39) that condition (41) can be dropped, if we set

M(t) = 1 + L0t

or
M = 2,

since t ∈ [0, 1
L0

).

2. The point rA is the convergence radius of Newton’s method

xn+1 = xn − f ′(xn)−1f(xn), for each n = 0, 1, 2, . . . (55)

given by us in [2]. It follows from (33) that the convergence radius r of method (9)
is smaller than rA.

3. Let us show how to choose function ϕ, when H is defined by

H(x) = 1− 9(β − 1)
32

(
f ′(x− αf ′(x)−1f(x))

f ′(x)

)
. (56)

In view of the proof of Theorem 2 and (56), we have that

|H(τ)− 1| = 9
32 |β − 1||f

′(x∗)−1f ′(yn)
f ′(x∗)−1f ′(xn) |

2 ≤ 9
32 |β − 1| M2

(1− L0|xn − x∗|)2

= ϕ(|xn − x∗|).

If we choose
ϕ(t) = 9

32 |β − 1|
(

M

1− L0t

)2
. (57)

Next, we complete this section with some examples by choosing function ϕ as in (57).

Example 0.1 Let f be a function defined on D = Ū(0, 1), which is given as follows

f(x) = ex − 1.

Then, f ′(x) = ex and x∗ = 0. We get that L0 = e − 1 < L = e
1
L0 and M = e

1
L0 . The

parameters using method (9) are:

r1 = 0.154407, rp = 0.100312, r2 = 0.138045, rA = 0.382692

and as a consequence
r = 0.100312.

Example 0.2 Returning back to the motivational example, we have that L = L0 =
146.6629073, M = 2 and L1 = L. The parameters using method (9) are:

r1 = 0.001515, rp = 0.001138, r2 = 0.004589, rA = 0.00454557

and as a consequence
r = 0.001138.



Numerical experiments

In this section, we shall check the convergence behavior of newly proposed scheme (9)
using weight functions (27), (29) and (31) (for β = 3

4) to solve some nonlinear equations
given in Table 4, which serve to check the validity and efficiency of theoretical results.
These methods are denoted by OM1, OM2 and OM3, respectively. We compare them
with existing robust methods, namely, Jarratt’s method JM (3), Soleymani’s methods
(4) (S1), (5) (S2), Khattri and Abbasbandy method (6) (ABK), respectively. All com-
putations have been performed using the programming package Mathematica 7 [5] in
multiple precision arithmetic environment. We have considered 2000 digits floating point
arithmetic so as to minimize the round-off errors as much as possible.

To check the theoretical order of convergence, we calculate the computational order
of convergence (COC) [8] denoted by ρc using the following formula

ρc = log (|f(xn)/f(xn−1)|)
log (|f(xn−1)/f(xn−2)|) , n = 2, 3, ......,

by taking into consideration the last three approximations in the iteration process. We
have considered variety of test functions of different nature to compute the errors |xn−x∗|
of approximations.

For instance, we consider the following Planck’s radiation law problem which calculates
the energy density within an isothermal blackbody and is given by [20]:

Ψ(λ) = 8πcPλ−5

e
cP
λBT
−1

, (58)

where λ is the wavelength of the radiation, T is the absolute temperature of the blackbody,
B is the Boltzmann constant, P is the Planck constant and c is the speed of light. We are
interested in determining wavelength λ which corresponds to maximum energy density
Ψ(λ).

Further, Ψ′(λ) = 0 implies that the maximum value of Ψ occurs when

cP
λBT

e
cP
λBT

e
cP
λBT
−1

= 5. (59)

If x = cP
λBT

, then (59) is satisfied when

f1(x) = e−x + x

5 − 1 = 0. (60)

Therefore, the solutions of f1(x) = 0 give the maximum wavelength of radiation λ by
means of the following formula:

λ ≈ cP

x∗BT
, (61)

where x∗ is a solution of (60).
Now, let us consider the test function f3 is a polynomial of Wilkinson’s type with real

zeros 1, 2, 3, 4, 5. It is well-known that this class of polynomials is ill-conditioned and small
perturbations in polynomial coefficients cause drastic variations of zeros. Therefore, most
of the iterative methods encounter serious difficulties in finding the zeros of Wilkinson-
like polynomials. The errors |xn − x∗| of approximations to the corresponding zeros of
test functions and computational order of convergence ρc are displayed in Table 5, where



Table 4: Test functions and their zeros

f(x) Root (x∗) Initial Guess (x0)

f1(x) = e−x + x
5 − 1 4.965114 5.2

f2(x) = (x− 1)3 − 1 2 2.8

f3(x) = ∏5
i=1(x− i) 4 4.5

f4(x) = e−x
2+x+2 − cos (x+ 1) + x3 + 1 −1 0.2

f5(x) = xex
2 − sin x2 + 3 cosx+ 5 −1.201576. . . 0.9

f6(x) = e−x
2+x+2 − 1 −1 −0.6

Table 5: Comparison of different optimal fourth-order methods

f(x) JM S1 S2 ABK OM1 OM2 OM3
f1 |x1 − x∗| 0.708e−6 0.301e−2 0.704e−3 0.800e−6 0.703e−6 0.701e−6 0.701−6

|x2 − x∗|0.709e−280.821e−100.245e−150.136e−270.684e−28 0.675e−28 0.671e−28
|x3 − x∗|0.107e−480.454e−400.107e−480.107e−480.104e−43 0.107e−48 0.107e−48

COC (ρc) 4.0000 4.0000 4.0427 4.0000 4.0000 4.0000 4.0000

f2 |x1 − x∗| 0.528e−1 0.176e−1 0.480e−1 0.550e−1 0.272e−2 0.222e−2 0.595e−3
|x2 − x∗| 0.459e−5 0.201e−6 0.109e−4 0.586e−4 0.141e−10 0.254e−12 0.117e−13
|x3 − x∗|0.296e−210.384e−260.373e−190.107e−150.104e−43 0.433e−520.178e−56

COC (ρc) 3.9647 3.9855 3.9502 3.9176 3.9987 4.0002 3.9998

f3 |x1 − x∗| 0.108e+0 CUR CUR 0.217e+0 0.107e+0 0.105e+0 0.106e+0
|x2 − x∗| 0.292e−3 CUR CUR 0.393e+0 0.224e−3 0.139e−3 0.164e−3
|x3 − x∗|0.851e−14 CUR CUR 0.111e−1 0.238e−140.297e−150.612e−15

COC (ρc) 4.1747 — — 3.8388 4.1652 4.1170 4.13333

f4 |x1 − x∗| 0.217e+0 Div Div 0.219e+0 0.217e+0 0.217e+0 0.217e+0
|x2 − x∗| 0.176e−4 Div Div 0.198e−4 0.176e−4 0.175e−4 0.175e−4
|x3 − x∗|0.746e−20 Div Div 0.586e−200.752e−200.753e−200.753e−20

COC (ρc) 3.7643 — — 3.8464 3.7615 3.7598 3.7604

f5 |x1 − x∗| 0.266e−2 0.167e+0 0.119e+0 Div 0.661e−2 0.819e−2 0.450e−2
|x2 − x∗|0.205e−10 0.468e−2 0.935e−3 Div 0.150e−8 0.651e−8 0.499e−9
|x3 − x∗|0.475e−34 0.428e−8 0.451e−11 Div 0.513e−340.269e−320.476e−34

COC (ρc) 3.9994 3.6276 3.8074 — 4.0001 4.0022 4.0009

f6 |x1 − x∗| 0.102e−1 0.121e−1 0.160e−1 0.352e−1 0.423e−2 0.316e−2 0.354e−2
|x2 − x∗| 0.105e−7 0.846e−7 0.242e−6 0.171e−4 0.106e−9 0.585e−11 0.112e−10
|x3 − x∗|0.120e−310.216e−270.138e−250.123e−170.417e−400.710e−460.112e−44

COC (ρc) 3.9950 3.9895 3.9859 3.9449 3.9976 3.9976 3.9989

CUR: Convergence to undesired root and Div: stands for Divergence
Note: Bold-face numbers denote the least error among the displayed methods.



A(−h) denotes A × 10−h. On the accounts of results obtained in the Table 5, it can
be concluded that the proposed methods are highly efficient as compared to the existing
robust methods, when the accuracy is tested in the multi-precision digits. Additionally,
the computational order of convergence (COC) of these methods also confirmed the above
conclusions to a great extent.

Furthermore, we have also included two pathological examples to show that our pro-
posed methods (9) will converge to the complex root without having to start with a
complex number.

Example 1: g1(x) = x3 − 3x2 + 2x+ 2
5 .

In this pathological example, starting from the real initial guess x0 = 1.5, our methods
namely, OM1, OM2, OM3 for (β = 3/4) takes only 5 iterations to converge to the com-
plex root 1.57985− 0.0932014I with error in the approximation as 2.4264e-6− 4.39e-8I.
On the other hand, other existing methods fail to give complex roots starting from any
real guess.

Example 2: g2(x) = x3 + 2x2 + 5.
The zeros here are −2.69065, 0.345324− 1.31873I and 0.345324 + 1.31873I. Starting

with real initial guess x0 in our methods, we shall get a complex root. For instance,
starting from the real initial guess x0 = 0.4, our methods namely, OM1, OM2, OM3
for (β = 3

4) takes only 6 iterations to converge to the complex root 0.345324 − 1.31873I
with error in the approximation as 0.000e-17+2.6375I. The other existing methods get
no solution, no matter how many iterations are performed. This also demonstrates the
advantage of our methods in finding complex roots without having to start with a complex
initial guess.

Similar numerical experiments have been carried out on variety of problems which
confirm the above conclusions to a great extent. Finally, we observe that our proposed
methods have better stability and robustness as compared to the other existing methods.

Conclusions

In this study, we contribute further to the development of the theory of iteration processes
and propose new fourth-order variants of Jarratt type methods for solving nonlinear equa-
tions numerically. The presented scheme is optimal in the sense of Kung-Traub conjecture
and includes optimal modifications of Ostrowski’s square root method, Euler’s method
and Laguerre’s method for different values of free disposable parameter. Moreover, the lo-
cal convergence of these methods is also given using hypotheses only on the first derivative
and Lipschitz constants. The another most striking feature of this contribution is that the
proposed methods can locate the complex roots without having to start from a complex
number as would be necessary with other methods. Finally, the asserted superiority of
the proposed methods is also corroborated in the numerical section.
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[13] Argyros, I.K. and Magreñán, Á.A. (2015) On the convergence of an optimal fourth-order family
of methods and its dynamics, Appl. Math. Comput. 252, 336–346.
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