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Abstract 

Simulation of fatigue crack propagation and prediction of structural life is crucial to ensure the 

safety of engineering structure. The standard Extended Finite Element Method (XFEM) 

requires sufficiently fine mesh for crack propagation problems, which is computationally 

expensive and inconvenient to operate. In the present work, a simple dynamic adaptive mesh 

refinement method is proposed using the Virtual-node Polygonal Element method within the 

framework of the XFEM. Through this method, a multi-level refinement of the custom region 

near the crack tip can be realized. The refinement area changes dynamically with the crack tip 

position during the crack propagation process, so that the demands of the computational cost 

and accuracy can be reconciled. The domain based interaction integral approach is used to 

obtain the stress intensity factors(SIFs). The propagation direction of the crack is determined 

by the maximum circumferential stress criterion and the fatigue life of the cracked structure is 

evaluated by Paris Law. Then two simple examples are presented and the accuracy and 

convergence of the algorithm are verified. Compared with the standard XFEM, the proposed 

method requires far fewer degrees of freedom for the same accuracy. Finally, two fatigue crack 

growth problems are solved, and the SIFs and fatigue life cycle show good agreement with the 

results available in literature. 

Keywords: Polygonal element method, Dynamic adaptive mesh refinement, Fatigue crack 

growth 

Introduction 

Many engineering structures will bear the effect of cyclic load during the service process. It is 

very important to study the propagation behavior of the crack under cyclic loading to ensure 

the safety of the structure. The study of fatigue crack propagation path and the prediction of 

structure life cycle has being a research focus in recent years. Over the last few decades, the 

Finite Element Method has been widely used in the analysis of fracture problems, and a lot of 

commercial software and open source software packages have emerged. Due to the fact that the 

mesh must be aligned with the crack surfaces in FEM, re-meshing is needed once the crack is 

propagated, which limits the application of FEM in dynamic crack propagation simulation. In 

order to solve this problem, researchers have proposed many new methods, such as meshless 



method[1]-[4], boundary element method (BEM)[5][6], superposition FEM[7][8], and extended finite 

element method (XFEM)[9]-[13]. Among these algorithms, XFEM has gained the most attentions 

for dynamic fracture problems with the discontinuities[14]-[16]. The key point is that augmented 

XFEM space of alive cracks is achieved by adopting the enrichment functions in terms of 

partition of unity (PU) and mesh is not required to be aligned with the crack surfaces.  

Although XFEM can achieve better results in simulations of fatigue crack propagation, it is 

difficult for XFEM to balance the computational accuracy and computational efficiency for 

large and complex structures[17]. To ensure the accuracy of the stress intensity factors(SIFs) 

near the crack tip, it is necessary to set a fine mesh around the crack tip. On the other hand, to 

accurately characterize the actual crack propagation path, the crack growth increment should 

not be too large at each step, which also requires that the mesh near the crack tip should not be 

too coarse[16]. However, the location of crack tips are changing since the crack is propagated, a 

fine mesh for the whole domain or a local mesh refine method is needed to tackle the above 

problem. A fine global mesh will greatly decrease the computational efficiency while local 

mesh refine always needs to bring in transition elements and it will face the problem of mesh 

coarsening when the position of crack tips changes. 

To solve the problems mentioned above, a multi-level adaptively refined mesh in XFEM at the 

crack tip is formulated by introducing virtual node polygonal element method (VPM) for 

solving elastic fracture mechanics. The foremost merit of proposed dynamic mesh refinement 

strategy is that the refine domain can be automatically moved with the crack tip without 

transition elements. Moreover, this method only needs to modify the shape function of the 

element and can be easily added to the existing XFEM program framework. This method has 

been applied to transient temperature field soldering in laser welding[19] and thermal fatigue 

crack propagation prediction[17]. 

Brief on the VP-XFEM 

Small-deformation based homogeneous isotropic and linear-elastic cracked domain is 

considered here to derive the partial differential equations with VP-XFEM. 

Governing equations 

A 2D homogenous problem domain Ω without considering any discontinuities can be 

discretized into N polygonal elements with arbitrary nodes in VP-XFEM. The boundary Γ can 

be partitioned into the displacement Γu, the traction Γt and the traction free Γc. Thus the 

equilibrium conditions and boundary conditions are given as 

0  σ b  in Ω (1) 

u u  at Γu (2) 

 σ n t at Γt (3) 

0 σ n  at Γc (4) 



where  is the divergence operator, σ is the Cauchy stress tensor and b is the body force term, 

uΓ and tΓ are the vectors of the prescribed displacements and tractions, respectively. The unit 

vector n is defined as the outward normal to the boundary Γ. 

The constitution relationship is given by 

σ Dε  (5) 

 
T

2  
 

ε = u + u  (6) 

where D is the matrix of material constants and σT={σxx, σyy, σxy } and ɛT={ɛxx, ɛyy, ɛxy } are the 

vectors of the stress and strain tensor, respectively. u={u, v }T is the vector of the assumed 

displacement with newly-developed VP-XFEM. 

VPM shape function 

Assuming that a problem domain Ω bounded by Γ is discretized by N polygonal elements. For 

a given n-nodes polygon that can be divided into n virtual sub-triangles, the shape function of 

VPM consists of two components: the least-squares method (LSM) and the constant strain 

triangular element (CST). Assuming a point of interest pl with the Cartesian coordinates xT=(x, 

y, z), the shape function in VPM can be defined as 

               ,I II,l i il jl l k l i lW W         
 

 x x x x x x x  (7) 

where the subscript i of weight function WI from CST and weight function WII from LSM 

represents that the point pl is located inside the given sub-triangle Ti, the subscript k stands for 

the k-th polygonal element in the discretized domain. Note that weight functions WI and WII are 

assigned as WI=φi+φj and WI=-φk in which the subscript i, j and k represent the local nodal 

number of a sub-triangle. φ and ψ are shape functions based on the area or volume coordinates 

of CST and LSM, respectively. 

VP-XFEM approximations 

The displacement vector uXFEM in a cracked domain is  

           
XFEM
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

   
   

     x x x xu u x a x b  (8) 

where I, J and K are the number of all nodes, that of interested nodes of bisected support and 

that of enriched nodes of bounded crack tip support, respectively; ui and ϕi or ϕj are the 

displacement vector and shape function associated with node i or j of standard FEM, 

respectively; aj are the additional degree of freedoms (DOFs) of bisected support by a crack 

path, bk are the enriched DOFs associated with node k of crack tip region. H(x) is the Heaviside 

function and χα is the component of crack tip enrichment function ψα(x) in which α=1, 2, 3, 4 

as below 

     1 if 0;  otherwise 1H H     x x x n x  (9) 
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where r and θ are the polar coordinates of interested point x with its origin crack tip. 



Since the equation (8) is inconvenient for the imposing of essential displacement boundary 

conditions, the displacement requires to be further modified by replacing the enrichment 

functions with VP-XFEM as[14] 

         VP-XFEM i i j j j

i I j J

H H 
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  u u x x ax xx  

(11) 
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Dynamic adaptive mesh refinement 

VP Shape function continuity 

Taking the quadrilateral for an exemplified data structure (see Fig. 1), the sub-quadrilateral 

element ① is further divided into four elements of ①, ⑤, ⑥ and ⑦. Thus the elements of 

② and ③ have the hanging nodes of d and e, respectively. However in the VP-XFEM, there 

are no hanging node any more. All elements are recalled as polygonal element with variable n 

nodes, which can be treated by a VP shape function. 

 

Fig. 1. The locally refined scheme with hanging nodes assigned as polygonal elements 

with variable n nodes: (a) the triangle based refinement; (b) the quadrilateral based 

refinement. 

Based on the VP shape function in Eq. (7), the shape functions inside mixed or hybrid elements 

are depicted in Fig. 2. It is clearly observed that the VP shape functions possess a good 

continuity even near the hanging nodes. Such excellent property provides a feasible method to 

refine the mesh at the crack tip. 



 

Fig. 2. The VP shape functions near hanging nodes of quadrilateral elements, in which 

the shape functions in (a) for d and (b) for e are zero over parts of the surrounding 

elements. 

Single-step dynamic refinement 

Based on linear elastic fracture mechanics, fatigue crack growth can be considered as a 

successive incident happened in the cyclic plastic zone ahead of a growing crack tip. An 

increment of crack extension is usually assumed to simulate the cracking process. To highlight 

the accuracy, a sing-step dynamic refinement algorithm is proposed along the crack path for an 

example of the four-point bending beam[17].Firstly, the refinement level Lr ( ≤ 4) and initial 

refinement dimension Rd are given in terms of Rd=αrLmax, in which αr and Lmax are the modeling 

parameter (αr = 0.1~0.2 in view of the computational efficiency) and the maximum length of 

meshing box, respectively. Then the refinement radius of the i-th refinement level for a cracked 

problem can be taken as 

 1

d 0 1i

ir R      (12) 

where β is the refinement coefficient with an optimum value of 0.5. 

For the nodes located in a circle with the radius ri, all elements connected with those nodes 

require to be refined. Note that the identified circle is centered by the crack tip as shown in Fig. 

3. However for multiple cracks in red herein, a domain union is created when multi cracks are 

available, as illustrated in Fig. 3. 



 

Fig. 3. The dynamic refinement of typical quadrilateral elements and the merged meshing 

regions around the crack after two meshing refinement operations. 

Multi-step dynamic refinement 

To achieve a good balance between accuracy and efficiency, two sets of meshing are introduced 

to deal with the refinement process. The initial background mesh with coarse elements (called 

the base mesh here) is stored by the first meshing set and keeps the same throughout the 

dynamic crack growth. The second meshing set is created dynamically with a growing crack 

tip, which is refined only at the crack tip with a single-step method. Fig. 4 presents the flowchart 

of the multi-step dynamic refinement around the crack tip with VP-XFEM. 

Input initial mesh

Mesh refine

Standard XFEM calculation

Crack growth

k ≤ Nstep ?

End

Yes

No

VPE interpolation

k=k+1

The i-th local mesh refine with radius ri

i ≤ N ?

Sort the nodes of polygon elements

Yes

No

Get the crack location of the k-th substep

i = i + 1

 

Fig. 4. A flowchart for the multi-step dynamic mesh refinement concept only around the 

crack tip during a typical fatigue crack growth simulation. 

It is evidently seen from the flowchart that the initial background mesh is kept constant during 

the whole simulation and the local refinement from Eq. (12) is always conducted according to 

the position of a growing crack tip. The refined meshes on the crack path are retrieved to the 



initial background mesh when the crack tip goes through the region. Here the four-point bending 

is used to present the concept as illustrated in Fig. 5. With the VP-XFEM in above Fig. 5, a 

four-level refined elemental meshing has been ideally realized with the movement of the crack 

tip for different incremental steps. The most significant advantage of current adaptively refined 

XFEM with the VP shape functions is actually independent of standard XFEM codes. 

 

Fig. 5. The implementation of the dynamically local refinement meshing always at the 

crack tips with VP-XFEM, where the refined elements are bounded in terms of Eq. (12). 

Crack growth modeling 

For a 2D engineering crack under complex stress state, the domain based interaction integral 

approach is used to obtain the SIFs[10], and the maximum circumferential stress criterion is used 

to determine the dynamic crack growth direction 
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Under constant fatigue loading, the SIF range ΔK can be calculated by 

max minK K K    (14) 

where Kmax and Kmin are the maximum and minimum SIFs, respectively. The effective SIF range 

of ΔKeff can thus be determined in terms of mode I cracking SIF range or ΔKI and mode-II 

cracking SIF range or ΔKII when approaching the critical angle θc by 

3 2c c c
eff I IIcos 3 cos sin

2 2 2
K K K

       
         

     
 (15) 

To predict the residual life of a cracked component based on elastic fracture mechanics, the 

proper selection of fatigue crack growth rate law is a fundamental issue for long cracks, and 

classical Paris model is probably the most useful in practice as 

 eff

d

d

ma
C K

N
 

 
(16) 

where a and N are the crack extension and reversed cycles, respectively. C and m are the 

material parameters determined also dependent of testing conditions. Once crack growth 

resistance and crack driving force are known for a single standard crack, fatigue growth life can 

be integrated in terms of Eq. (16) under constant crack extension Δa. On the other hand, the 



maximum crack extension Δamax is assumed to be constant in case of an arbitrary-orientated 

crack or multi cracks. Therefore, the incremental length for any crack front point from VP-

XFEM can be calculated by 

eff
max

eff,max

m

K
a a

K
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

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(17) 

where ΔKeff,max is the maximum nodal ΔKeff among all front points of a crack. It should be noted 

that the cracking simulation is stopped automatically when nodal ΔKeff,max at a point of crack 

front is larger than measured fracture toughness Kmat of a material. 

Numerical results 

This sections verify the novel VP-XFEM models in terms of accuracy, convergence and 

efficiency by using different pre-cracked problems with or without analytical solutions. For 

quantitative examinations of the performance of proposed VP-XFEM in contrast with standard 

XFEM, two types of normalized error norms are introduced including the displacement error 

norm Eu and the energy error norm Ee as 
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(19) 

where the subscripts of u and e represent the displacement and energy norms, respectively. 

While the superscripts of exa and app stand for the approximate and exact or reference solutions 

to the displacement, strain and stress, respectively. 

Linear patch test 

The first example is to perform a patch test that is widely used in standard FEM. Three patches 

as shown in Fig. 6 are examined in terms of computational accuracy. Fig. 7 (a) gives a patch 

with 20 normal quadrilaterals, Fig. 8 (b) gives one with 26 polygonal elements where two 

rectangles are further divided into four quadrilaterals, thus producing 3 hanging nodes of each 

element. Finally, Fig. 9 (c) shows one with arbitrary-distributed and different-sized polygonal 

or mixed elements. 

 



Fig. 10. Three typical meshes used for the patch tests: (a) perturbed 

quadrilateral mesh, (b) locally refined quadrilateral mesh and (c) full-field 

polygonal mesh. 

The material parameters used in the testing are assumed as: Young's modulus of E=1.0 and 

Poisson's ratio of v=0.3. Note that in the work the international standard unit system is based 

unless specially denoted. For all patches, the displacements are prescribed along all boundaries 

by a linear basis of x and y as[20] 

1u x y    (20) 

1 2v x y    (21) 

For a fully discontinuous domain or a problem without a crack, the XFEM is actually equivalent 

to standard FEM as built in Eq. (8). As a relatively fair comparison, 2×2 Gaussian integration 

scheme is employed for standard XFEM. While only one integration point into each virtual 

triangles adopted for VP-XFEM proposed. Table 1 lists the errors of different meshing schemes 

for both XFEM and novel VP-XFEM. It is found that newly-proposed VP-XFEM using local 

polygonal shape functions can pass the patch tests within machine precision, showing that 

current VP-XFEM can exactly reconstruct a linear function of imposed displacements. 

Table 1. Relative errors for three mesh cases of standard finite elements, hybrid finite 

elements with hanging nodes and full-filed polygonal elements. 

Error norms Models Mesh A Mesh B Mesh C 

Eu 

XFEM 3.50057e-14 — — 

VP-

XFEM 

2.90270e-15 8.55441e-15 2.52088e-14 

Ee 

XFEM 1.11148e-14 — — 

VP-

XFEM 

1.77698e-15 4.40240e-15 1.25195e-15 

Besides, current VP-XFEM presents higher accuracy compared with standard XFEM. 

Furthermore, for locally refined elements with hanging nodes and irregularly polygonal 

elements, current VP-XFEM model with at least linear consistency can still satisfy the patch 

test at better accuracy. In contrast, original XFEM cannot cope with the problems with hanging 

nodes and polygonal elements. 

Plate with an edge crack 

The next problem is an edge-crack finite width plate of size 90mm×108mm under cyclic tensile 

load of Fmin=8kN and Fmax=16kN[16], the initial crack length a=45mm and the thickness of the 

plate is 6mm as shown in Fig. 7, some material parameters are taken as:Young modulus 

E=200GPa, Poisson’s v=0.30, Paris exponent m=2.1, Paris constant C=7×10-8. 



 

Fig. 11. Edge crack problem with a pre-crack subjected to cyclic tensile load. 

The problem is solved by standard XFEM and VP-XFEM, the results are compared with the 

VNXFEM[16] and the experiment[21]. A uniform mesh of size 30×40 nodes is used with crack 

growth increment of 4.0mm for standard XFEM while the same mesh but with crack growth 

increments of 2.0mm and 4.0mm is used for VNXFEM. As for VP-XFEM, a coarse mesh of 

size 20×30 nodes is used and the refine radius αr=0.15, refine level N=3 with crack growth 

increment of 2.0mm. Fig. 8 shows the variation of ΔKeff as the crack grows. It can be seen that 

the three methods are all in good agreement with the experiment result. Besides, the VP-XFEM 

result is closer to the experiment through the partial amplification drawings. Moreover, the total 

DOFs of VP-XFEM is about 2500 to 2600 while the XFEM DOFs is around 2500, which 

demonstrates the computational efficiency of VP-XFEM. It is worth mentioning that the crack 

growth increment must be larger than the mesh size in standard XFEM, the VNXFEM breaks 

this limit by the partition of crack tip element, while the novel VP-XFEM achieves the same 

goal through the refinement of elements around the crack tip. 



 

Fig. 12.The ΔKeff variation with crack length of different cases. 

Two internal non-colinear cracks 

Based on newly-proposed VP-XFEM, this section performs a nonlinear analysis of fatigue 

crack growth of a rectangular plate (90×180mm2) subjected to reversed cyclic loading. In the 

middle of the plate under a cyclic tension (σmax=160MPa, σmin=0, then the stress ratio R=0, see 

Fig. 13) at both remote edges, there are two non-collinear and parallel straight cracks with the 

initial length a0=10mm[4]. Moreover, the horizontal and vertical distances between two crack 

tip points (A) are 15mm and 5mm, respectively. 

 

Fig. 13. Calculated cracking paths in a finite sized rectangular plate with two 

non-collinear cracks under cyclic tension loading at the stress ratio of R=0. 

The material properties of fatigue resistance are taken as: E=74GPa, v=0.3, the fracture 

toughness of Kmat=1897.35N/mm3/2, the Paris law based fatigue cracking parameters of 

C=2.087136×10-13 and m=3.32. The problem domain is discretized with nodes of 30×60 as an 
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initial background mesh for the VP-XFEM. In the fatigue cracking simulation, some parameters 

are taken as: the initial refinement radius is 0.1Lmax, the refinement level is Lr=4 and the crack 

increment is Δamax=2mm. Note that for dynamic fracture mechanics, the large refinement level 

and high refinement radius should be adopted for better accurate SIFs solutions to determine 

the cracking direction and rate. 

The evolutions of the SIF ranges (ΔKI,A, ΔKI,B, ΔKII,A and ΔKII,B) and the effective SIF range 

(ΔKeff,A and ΔKeff,B in terms of Eq. (15)) at the most interior crack tips (A) and the crack tips 

near the edge (B) with the crack extension ai is plotted in Fig. 14 and Fig. 15, respectively. As 

a comparison in this figure, numerical solutions from meshless method are available with totally 

1416 nodes to discretize the same rectangular plate. 
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Fig. 14. The curves of SIF ranges of both points A and B with the crack length under a 

cyclic tension, in which meshless solutions are also provided for a comparison. 
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Fig. 15. The curves of effective SIF ranges of both points A and B with the crack length 

under a cyclic tension, in which the fracture toughness is provided to bound the 

cracking process. 

Compared with meshless solutions with almost the DOFs, the present VP-XFEM always 

provides the larger SIF ranges at both points A and B, which shows an over-estimation results 

for a damaged body. At the starting of the cyclic loading, both ΔKII,A and ΔKII,B are basically 

zero to be a purely mode-I cracking problem. In contrast, the mode I fracture parameter ΔKI,A 

of point A increases more rapidly than ΔKII,B of point B until the mode II fracture parameter 

ΔKII,A becomes negative. It is reasonably believed that the interaction due to crack tip stress 

fields happens with the crack extension of 25mm. However this phenomenon vanishes rapidly 

once the overlapping of two crack tips A takes place due to stress relaxation, showing a 

decreasing of the SIF ranges. 

The effective SIF ranges in Fig. 15 are therefore feasible to evaluate the fatigue cracking process 

in terms of near-zero mode II fracture parameters. When the effective SIF range at point B 

exceeds the fracture toughness, an unstable fracture occurs. It is clearly seen that the predicted 

crack paths with lines in red are good agreement with both results of meshless method and 

experiments[4]. Based on the calculated SIF ranges of ΔKeff,A and ΔKeff,B, the final fatigue crack 

growth life can be acquired in terms of Eq. 

(16)

, as illustrated in Fig. 16 for both points A and 

B together with total values. It is found that for the same crack extension, the VP-XFEM 

provides a short fatigue life. The residual life of the similar cracked component is predicted as 

6630 cycles, which well coincides with the experiment. 
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Fig. 16. Crack extension-Number of cyclic loading diagram. 

Conclusions 

In this paper, a theoretical study and an intensive numerical investigations on the newly-

developed virtual polygonal elements based XFEM (VP-XFEM) have been carried out in terms 

of the local adaptive refinement strategy at the crack tip. The numerical results of VP-XFEM 

fully illustrate the advantages of the proposed method. The balance of computational accuracy 

and efficiency can be achieved by adjusting the refine parameters. Moreover, this method can 

be easily expanded to three dimensional problems. 
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