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Abstract
We introduce a non-standard finite difference method to approximate solutions of a class of
nonlinear reaction-diffusion equations with variable coefficient. These equations describe the
growth, decay, colony and mutual transformation processes of biomass. So, these solutions of
model must be bounded and non-negative. Due to obtain the exact solutions is very difficult
task, whence, it is high significant that designing numerical techniques to approximate them.
Our FDM are quite efficient for ensuring that their boundedness and non-negativity. All these
examples have showed that our non-standard FDM can ensure the solution automatically
bounded, as long as some conditions are satisfied.

Keywords: Nonlinear, Reaction-diffusion equations, FDM, Convergence, Stability,Non-
negative, Bounded.

1. Introduction

It is well known that nonlinear reaction-diffusion equations has been widely applied in
physics, biochemistry, biological sciences, environmental sciences, and many other fields of
science. However, it is impossible to get their analytical solutions. Hence, it is very significant
to develop high-performance numerical algorithms for this kind of equations. Researchers
have developed various models to study mechanisms and courses of bacterium biofilm’s
formation by applying nonlinear reaction-diffusion equation. In the study of biofilm, Eberl etc.
presented many type biofilm models, such as single biofilm model, coupling of biofilm model
and complex biofilm model etc.[1]-[3]. Many numerical methods including finite difference
method, finite volume method etc. are applied to solve this kind of equations[4]-[9]. In this
paper, a positivity-preserving non-standard FDM are presented solving the numerical
solutions of a class of biofilm model which are constructed by Eberl etc.. The method is
powerful to producing an accurate solution, approximating the positive and bounded solutions
of biological film model.

2. Mathematical model

In this work, we study three type bio-film models which are governed respectively by the
following equations.
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From a biological point of view, the partial differential Eq.(1) is the simplest bio-film model
which characterizes the growth, decay, colony process of single species bacteria[1], the partial
differential Eqs.(2) is a coupling bio-film model which characterizes the laws of mutual



transformation process between the nutrient mass and bio-mass[2], the system of PDEs (3)
characterizes the laws of interaction among different bacteria, between a colony of bacteria
and a surrounding substrate of nutrients[3].
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for every  RtX ),( , here, }|0{ RttR  and  denotes an open, bounded and
connected subset of dR ( 3,2,1d ), where the biomass grows,  is the boundary of , and

 is the closed domain where the biomass growth problem is set. Here,  and 
represent, respectively, the spatial gradient operator and the spatial divergence operator. In
single and coupling bio-film models, unknown u is the concentration of biological normalized
with respect to a maximum value and parameter r is the growth rate of biomass. In couple and
complex bio-film models, s is the concentration of nutrient normalized with respect to a
maximum value. Furthermore, the unknown function ),( tXM is the total biological mass
density of system at  RtX ),( and there are three types of biomass concentrations that are
tracked: living biomass denoted by ),( tXB , inert or dead biomass denoted by ),( tXI , and the
extra-cellular polymeric substances (EPS) denoted by ),( tXE , all of them normalized with
respect to a maximum value.Obviously, s , B , I , E and M are all bounded and limited in
interval [0,1) for every  RtX ),( . We assume that all these parameters of Eq.(2) and (3)
are positive and are obtained by experiment, such that  , 1d , 2d ,etc. The real function ( )D u is
the nonlinear diffusion coefficient that must reflect the dynamics of the biological evolution
(the growth, decay and colony of the biological), and is, in general, a function of biomass,
hence it is a source of the non-linearity.

The form of the diffusion coefficient is given as a function of the biomass itself:
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where 0 , 1  and 1  .

In general, systems (1), (2) and (3) need satisfy some appropriate initial conditions on  and
are imposed some boundary conditions on  , these boundary conditions may be homogen-
eous Neumann or Dirichlet boundary conditions.

3. Numerical method

Let cba ,, and d be real numbers, such that ba  and dc  , and let M , N and K be
positive integers. Let ),(),( dcba  be an open rectangle domain in 2R . The regular grids
can now defined as,

xixi  )1( , 1,,1  Mi  , and Mabx /)(  ;
yjy j  )1( , 1,,1  Nj  , and Ncdy /)(  ;
tktk  )1( , 1, , 1k P  and PTt / ,

where, NMkji ,,,, and P are all positive integers. When yx  , we denote the ratio of
mesh size as
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For every  zk , we give the following standard one order differential operator and non-
standard differential operators:

),,(2

2

2
,1

1
,,1

,
2 2

kji tyx

k
ji

k
ji

k
jik

jix x
f

x
fff

f







 


 (6)

),,(
,,1

, kji tyx

k
ji

k
jik

jix x
f

x
ff

f







  (5)

),,(2

2

2
1,

1
,1,

,
2 2

kji tyx

k
ji

k
ji

k
jik

jiy y
f

y
fff

f







 


 (7)

),,(
2

2

1
,,1,,1

2

1
,,1,,1

,
2

)))(((

)
))(())((

(
2
1

kji tyx

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
jik

jiDx

x
ffD

x
ffDD

x
ffDD

f




















(8)

),,(
2

2

1
,1,,1,

2

1
,1,,1,

,
2

)))(((

)
))(())((

(
2
1

kji tyx

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
jik

jiDy

y
ffD

y
ffDD

y
ffDD

f




















(9)



Under these assumptions, equations (1), (2) and (3) have following discrete forms[5]-[6]:
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4. Numerical examinations

Example 4. 1We choose parameters: 3.0r , 410 , 4  , 02.0 yx and
410t . The problem domain is ]1,0[]1,0[  . The corresponding initial condition is given by
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The homogeneous Neumann boundary conditions are imposed at all the grid points on the
four edges of the boundary of  . The results are plotted in Fig. 1.

From Fig. 1, it can be observed that the bio-film density continuously grow, and its colony
spreads over the problem domain with the increase of time. This is because the biomass
growth rate r is set larger than zeros. Eventually, biological density reaches a stable state that
is almost close to the peak value 1 at time 3t .



Fig. 1 Graphs of the approximate solutions of single species bio-film system (1) versus x and
y at times 0,1,2 and 3.

Example 4. 2 Let 015.01 d , 005.02 d , 65.01 k , 2.02 k , 85.03 k , 1.04 k , 2  ,
1 and )1,0(1,0  ）（ . The corresponding initial conditions are given by
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The homogeneous Neumann boundary conditions are imposed all grid points on the boundary
of . The results are plotted in Fig. 2, using 0004.0t ，and = 02.0 yx .

In Fig. 2, it can be observed that the bio-film density continuously grows and colony spreads
at initial stage. This is because the bio-film decay rate 2k is small than the maximum specific
growth rate 3k . But the bio-film density will decay with the nutrient consumption. By
comparing with the distribution graph of left column and column at time 1, 2 and 3, we can
find the left and right graph are highly complementary to each other.



Fig. 2 Graphs of the approximate solutions of the coupling bio-film system (2) versus x and y
at times 0,1,2,3,4 and 10.

Example 4. 3 Let 08.0 , 04.0HY ， 04.0 EE kY , 2.0sk , 03.0Ik , 08.0Lk ,
2  and ）（ 1,0 . The corresponding initial conditions are given by
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The homogeneous Neumann boundary conditions are imposed all grid points on the boundary

of . The results are plotted in Figure 1, using 0001.0t ，and 01.0 .

Fig. 3 Graphs of the approximate solutions of the complex bio-film system (3) versus x
at times 0,0.01,0.02,0.05,0.1 and 1.

Fig. 3 gives the approximate solutions of system (3) at six different times. Every graph
provide the status of the total biomass M , which include active biomass B ,inert biomass
I and extra-cellular poly-metric substances E . In each case, the corresponding graph of
nutrient consumption also be plotted in right of total biomass M .

5. Conclusions

Applying our method solve three type of nonlinear biofilm models can ensure that numerical
solutions are non-non-negative, bounded, and more important is it can also successfully
eliminate the ill effects (such as the oscillation of numerical solutions) which is rooted in
diffusion coefficient with singularity when biomass density approaches its maximum value at
1.
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