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Abstract:  

A reduced-order modeling technique, termed the Koiter-Newton method, is presented for the 

elastic nonlinear structural problems. It is a combination of Koiter analysis and Newton arc-

length method so that it is accurate over the whole equilibrium path but is also efficient in the 

presence of buckling. Various numerical examples are presented to evaluate the performance 

of the method.  
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Introduction  

Nonlinear static analysis of structures is an essential step of the design of flight vehicles. It is 

also important in many situations of practical interest. For example, it is crucial when the 

displacements and/or rotations are large. Even more importantly for flight vehicles is the case 

where the structure (or some of its components) are prone to buckling. In many cases, it is 

crucial to assess the loads at which buckling occurs as well as the behavior of the structure 

beyond the buckling point (usually termed post-buckling analysis) [1]. 

Traditionally, there have been two major approaches to this problem. The first approach is the 

reduction method which is based on the physics-based reduced order models[2][3]. The basic 

idea is to significantly reduce the number of degrees of freedom in a nonlinear finite element 

model. Several orders of magnitude reduction in model size is possible using this approach[4] 

[5]. This method can be implemented in a finite element environment[2][4] and applied to 

moderately complex structures. Basically, there are two kinds of reduction methods. One is 

the Koiter's reduction method which is based on the Koiter's celebrated initial post-buckling 

theory
 
[6]-[8]. It is very good for dealing with buckling sensitive structures and closely spaced 

modes. But it is based on just one perturbation expansion and is valid only in a small range 

around the buckling point. The other one is the general reduction method based on the power 

series expansion[9][10]. The expansions are carried out on some points along the equilibrium 

path in a step by step manner so that it can trace the whole nonlinear path. However, it is not 

good for dealing with the buckling sensitive structures. In addition, for both of the two 

reduction methods, there is no further link between the original finite element model and the 

reduced order model. Thus, the range of validity of the approximate model needs to be 

assessed by comparison to a full finite element analysis. This situation greatly limits the 

applicability of the new approach. The second approach is the finite element analysis. In this 

approach, the nonlinear response is traced along the equilibrium path starting from the non-



deformed position by a traditional Newton method. Now, this approach finds difficulty in 

tracing the response of buckling sensitive structures especially if the structure has closely 

spaced buckling modes[11]. In addition, this method is usually very expensive for computing 

the large nonlinear equations. 

To achieve greater applicability, a combination of Koiter analysis and Newton arc-length 

method is proposed in this paper. In this Koiter-Newton approach, a reduced order model 

(ROM) is constructed based on the Koiter's initial post-buckling theory. This ROM is used to 

make an initial prediction of the response of the structure. At the new predicted point, the 

exact unbalanced force residual is calculated using the full finite element model. Then in a 

corrector step, this residual is driven to zero similar to traditional Newton arc-length methods. 

As the solution proceeds to higher and higher load levels, the quality of the ROM are assessed 

(based on the norm of force residuals) and if needed the ROM is updated to reflect changes in 

structural stiffness and load distribution. The proposed approach will significantly improve 

the efficiency of nonlinear static finite element analysis by incorporating information from 

Koiter's analysis while retaining the complete generality usually associated with finite 

element modeling.  

Koiter Newton Approach 

The nonlinear equilibrium equations can be written as the following simple form. It is ended 

with the third order about the displacement  u, 

             ( ) ( , ) ( , , )L u Q u u C u u u f F                                                 (1) 

where L is a linear operator,  Q is a quadratic one and C is a cubic one.  f is a matrix whose 

columns are formed by the sub-loads fp. λ is the load parameter vector. The multiple load F is 

a summation of the sub-loads multiplied by the corresponding load parameters, 
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where, m+1 is the total number of degrees of freedom in the reduction method. m is the 

number of degrees of freedom which is used in the analysis for describing the buckling 

branches and it is associated with the number of the closed buckling modes of the structure. 1 

is the general degree of freedom for the primary path.  

The displacement is also expanded to the third order with respect to the perturbation 

parameter a, 

i i i j ij i j k ijku a u a a u a a a u                                                        (3) 

where, the subscripts i,j,k=1,2,...,m+1. In the first order displacements ui, u1 is the 

displacement in the primary path; ui(i=others) is the buckling branches. The second order 

displacements uij and third order displacements uijk describe the interaction effect of different 

first order displacement fields.  



The finial reduced order model is assumed to be, 

( ) ( , ) ( , , )L a Q a a C a a a                                                      (4) 

where, the L , Q  and C  are separately the linear, quadratic and cubic operator. Introducing 

the equation (3) and (4) to the both sides of the equilibrium equation (1) and equating the 

coefficients of the various powers of a to zero, it will yield three linear equations. 
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where, the subscripts i,j,k,p=1,2,...,m+1. Kt= L  is the tangent stiffness matrix. In the vector Ei, 

only the ith component is equal to one and the other components are all equal to zero. It is easy 

to see that only the first two linear equations need the matrix triangulation and they two have 

the same coefficient matrix. After solving them, the L , Q  , C , ui, uij can be obtained. Then, 

the specific expression of the ROM is generated. Using the arc-length method to solve the 

ROM, the relationship for the load parameter λ and perturbation parameter a will be known. 

Introducing this relationship into the expansion of the displacement (3), the nonlinear 

response of the structure( λ - u) will be obtained.  

In order to have an efficient algorithm, the analysis of the range of validity and the definition 

of a new starting point should be automatic, i.e. we have to automatically determine the 

values of the displacement u, over which the reduced solution will not satisfy a given 

accuracy.  

In each step (or expansion) of the Koiter-Newton approach, this ROM is used to make an 

initial prediction of the response of the structure. During solving the ROM, the exact 

unbalanced force is calculated using the full finite element model at the end of each solution 

step. A criterion about the unbalanced force is given to judge when the initial prediction 

should be ended. If the criterion is not satisfied, the initial prediction will be stopped. Then in 

the following corrector step, this residual RF will be driven to zero similar to traditional 

Newton arc-length methods. The convergent point on the equilibrium path will be a new 

starting point for the next expansion.  Until now, one whole step for the Koiter-Newton 

approach is ended. The path-tracing strategy of the proposed method is illustrated in Fig. 1. 

The proposed method has a larger step size to trace the nonlinear equilibrium path of the 

structure, compared to the conventional Newton method. This makes the method be a 

computationally efficient technique. 



 

Figure 1.    Path-following strategy of the proposed method 

Numerical Examples 

Six beams[12]which all have a nonlinear prebuckling state are analyzed in this example. They 

have the different shape, depth, constrain condition and loading position, as showed in figure 

2. Young's modulus are all 2000MPa. The area and moment of inertia of the cross section are 

391mm
2
 and 2000mm

4
, respectively.   
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Figure 2  Buckling response curves for the six single beams 

Koiter-Newton approach is used to analyze these six beams. Because the first buckling load 

are not closed with the others, only the first buckling mode will be chosen and the number of 

degrees of freedom in the reduced order model is two. The nonlinear response curves (vertical 

displacement on the loading point vs. loading) compared with the Abaqus are in figure 2. For 

the beams(a)~(c), the figures show that only one perturbation step is enough to obtain an 

accurate buckling response(including prebuckling state, limit load and initial postbuckling 

state). However, because of the extremely nonlinearity of beams(e)~(g), 3, 3 and 4 steps will 

be needed to follow the nonlinear buckling paths, separately.  

The computing consumption for reaching the same point on the postbuckling path is 

compared with the Abaqus. Here, the numbers of the linear equations needed to be solved are 

listed on table 1 for comparison. It is obviously that the Koiter-Newton approach is much 

more efficient than Abaqus. 

Table 1. Comparison of the computing time 

Beam examples (a) (b) (c) (d) (e) (f) 

Abaqus 6 9 10 28 39 56 

Koiter-Newton 

method 
1 1 1 9 12 12 



 

Conclusions 

Based on the Koiter's initial post-buckling theory and the incremental iterative technique of 

the Newton method, a new reduction method, that is the Koiter-Newton method, which can 

trace the whole nonlinear equilibrium path automatically, is proposed. Co-rotational elements 

are successfully implemented into this new method. Some classical numerical examples are 

used to evaluate the Koiter-Newton method. If prebuckling nonlinearity is not very serious, 

only one perturbation step is enough to obtain the buckling characteristic. Otherwise, more 

steps will be needed due to the serious nonlinearity of the prebuckling. By comparing the 

results with Abaqus which adopts the full nonlinear finite element method, it proves that the 

Koiter-Newton method is automatically, accuracy and more efficient. 
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