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Abstract 
This paper presents a direct numerical simulation technique multigrid - finite element fictitious 
boundary method (FEM-FBM) for the simulation of incompressible viscous fluid flow along with 
moving rigid bodies. Multigrid finite element solver is used to compute fluid flow on a fixed 
Eulerian mesh which is independent of particles shape, size and number and the solid particles 
are allowed to move freely in the whole computational domain. Fictitious boundary method 
(FBM) is used to treat the particles inside the fluid which takes account the interaction between 
the fluid and the particles. FBM is based on an explicit volume integral based calculation for the 
hydrodynamic forces. Particle-particle and particle-wall interactions are handled by collision 
model proposed by P. Singh et al. [1]. The accuracy and efficiency of presented method is 
analyzed by four test cases and then numerical tests are performed to show that this method is 
potentially powerful and provides an efficient approach to simulate complex particulate flows 
with large number of particles. 
Keywords:Direct numerical simulation,Fictitious boundary method,Multigrid, Particulate flows, 
sedimentation. 

Introduction 
Particulate flows or motion of solid particles in fluids have a wide range of industrial 
applications, such as fluidized suspensions, lubricated transport, sedimentation, hydraulic 
fracturing of reservoirs, slurry flow, paper pulp, food products etc. These types of flows are 
common in many natural processes such as sand or dust particles in air blown by wind, ocean 
current interaction with offshore structures, lava flow and sedimentation in estuary etc. 
Particulate flows in biological processes have been a subject of great importance with research 
contributions coming from the field of biology, chemistry, physics, engineering and mathematics. 
Here we are particularly interested in gravitational settling of particles. The sedimentation of 
suspended particles have a great importance in the chemical, petroleum, paper pulp, wastewater, 
food, pharmaceutical, ceramic and other industries as a way of separating particles from fluid as 
well as separating particles of different types settling with different speeds.  
Particulate flows are quite complex and hard to simulate numerically, because frequent 
generation and deformation of computational grid is required in many cases when the particle 
boundaries are complex and moving with time. The problem becomes more complex in the case 
with large number of particles due to fluid particle interaction as well as due to particle-particle 
and particle-wall collisions. Rapid advancements in computational power makes the direct 
numerical simulation (DNS), an important and practical tool to study particulate flow mechanism. 
It treats the fluid and solid objects separately. The DNS approach is based on Navier– Stokes 
equation for the fluid and equations of rigid body motion for particles. A variety of DNS 
numerical schemes have been proposed over the past decade to simulate fluid-particle flow 
problems. These methods are broadly classified into two types.One is based on the Lagrangian 



approach while the other is the Eulerian approach. In Lagrangian approach, the mesh moves and 
follows the moving boundaries of the particles in the fluid. Since the motion of the mesh can be 
defined arbitrarily within the fluid, therefore this approach is usually called Arbitrary Lagrangian 
Eulerian (ALE). Hu et al. [2, 3], Maury [4, 5] and Feng et al. [6] have used the ALE method to 
study particulate flows. ALE method normally requires to generate a new mesh at every time step 
in the case of moving particles, so it is computationally expensive especially for the simulations 
of problems with large number of particles. Whereas, Eulerian approach is more efficient then the 
Lagrangian one. Eulerian methods do not require re-meshing, a fixed Cartesian mesh is required 
which covers the whole computational domain comprising of both particles and fluid. Peskin[7] 
introduced immersed boundary method (IBM), based on Eulerian approach to study fluid solid 
interaction problems. Similar to IBM, Glowinski et al. [8-10] developed a finite element fictitious 
domain method to simulate fluid particle flow problems. Turek et al. [11-13] presented a 
multigrid finite element fictitious boundary method FBM for the simulation of particulate flows.  
In the present work, we use the multigrid FEM fictitious boundary method[11-14] to simulate 
particle sedimentation problems. The considerable advantage of multigrid FEM fictitious 
boundary method is that it is based on a fixed FEM background grid which is independent of 
flow features, hence re-meshing is not required. By applying boundary conditions at the interface 
between fluid and particles which become an additional constraint to the governing equations, so 
the fluid domain can be extended into the whole domain which covers both fluid and particles.  

Mathematical Modeling  
Consider the flow of N number of solid particles of mass 𝑀𝑀𝑖𝑖(𝑖𝑖 =  1,  2, ⋅⋅⋅⋅,  𝑁𝑁) in a fluid. The 
density of the fluid is 𝜌𝜌𝑓𝑓 and its viscosity is ν. 𝛺𝛺𝑓𝑓(𝑡𝑡) and 𝛺𝛺𝑖𝑖(𝑡𝑡) denotes the domain occupied by 
the fluid and the 𝑖𝑖𝑡𝑡ℎ particle at time t respectively. 
 

 
 
 
 
 
 
 
 
 

Figure 1 Rigid particle and fluid 
 

whereas ΩT is the total domain and is given by  
 

Ω𝑇𝑇 = Ω𝑓𝑓(𝑡𝑡) ∪ Ω𝑖𝑖(𝑡𝑡),      ∀ 𝑖𝑖 = 1,2,3, … ,𝑁𝑁. 

𝛺𝛺𝑇𝑇 as an entire computational domain is independent of t. As 𝛺𝛺𝑓𝑓 and 𝛺𝛺𝑖𝑖 are always depends on 
time t we denote 𝛺𝛺𝑓𝑓(𝑡𝑡)  =   𝛺𝛺𝑓𝑓 and 𝛺𝛺𝑖𝑖(𝑡𝑡) =   𝛺𝛺𝑖𝑖 dropping t in the notations. Where 𝜕𝜕𝛺𝛺𝑖𝑖represents 
the boundary of the𝑖𝑖𝑡𝑡ℎ particle.  

Fluid Flow Model  

The motion of an incompressible fluid with density𝜌𝜌𝑓𝑓 is governed by the equations of continuity 
and momentum in the domain 𝛺𝛺𝑓𝑓 as, 
 

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢.∇𝑢𝑢� − ∇.𝜎𝜎 = 0,∇.𝑢𝑢 = 0,∀ 𝑡𝑡 ∈ (0,𝑇𝑇),   (1) 

 

Figure 1.Rigid particle and fluid 



𝜎𝜎is the total stress tensor in the fluid phase defined as 
 

𝜎𝜎 = −𝑝𝑝𝑝𝑝 + 𝜇𝜇𝑓𝑓[∇𝑢𝑢 + (∇𝑢𝑢)𝑇𝑇],      (2) 

where, 𝑢𝑢  is the fluid velocity, 𝑝𝑝 is the pressure, 𝜇𝜇𝑓𝑓  is the coefficient of viscosity and 𝐼𝐼 is the 
identity tensor. 

Particle Motion Model  
The rigid particles are free and allowed to move in the fluid domain. The particles have both 
translational and rotational motion under the action of gravity. Each particle experiences two type 
of forces one is hydrodynamic force due to fluid-particle interaction and other is collision force 
due to particle-particle and particle-wall interactions. The motion of solid particles is governed by 
the Newton-Euler equations [12, 15] i.e. if 𝑈𝑈𝑖𝑖and 𝜔𝜔𝑖𝑖 are the translational and angular velocities of 
the 𝑖𝑖𝑡𝑡ℎparticle respectively, then they satisfy, 
 

𝑀𝑀𝑖𝑖
𝑑𝑑𝑈𝑈𝑖𝑖
𝑑𝑑𝑑𝑑

= (∇𝑀𝑀𝑖𝑖)𝑔𝑔 + 𝐹𝐹𝑖𝑖 + 𝐹𝐹𝑖𝑖′, 𝐼𝐼𝑖𝑖
𝑑𝑑𝜔𝜔𝑖𝑖
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑖𝑖 × (𝐼𝐼𝑖𝑖𝜔𝜔𝑖𝑖) = 𝜏𝜏𝑖𝑖 ,   (3) 

where Mi is the mass of the 𝑖𝑖𝑡𝑡ℎparticle and if 𝑀𝑀𝑓𝑓is the mass of fluid occupying the same volume 
as 𝑀𝑀𝑖𝑖then ∆𝑀𝑀𝑖𝑖  is given by the mass difference between the mass of the 𝑖𝑖𝑡𝑡ℎparticle 𝑀𝑀𝑖𝑖  and the 
mass of the fluid 𝑀𝑀𝑓𝑓,  
 

∆𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖 −𝑀𝑀𝑓𝑓 , 

𝐹𝐹𝑖𝑖 represents resultant hydrodynamic i.e. drag and lift forces acting on the 𝑖𝑖𝑡𝑡ℎ particle, 𝐹𝐹𝑖𝑖′ are the 
collision forces acting on the 𝑖𝑖𝑡𝑡ℎparticle due to particle-particle and particle-wall collision, 𝐼𝐼𝑖𝑖 is 
the moment of inertia tensor of the 𝑖𝑖𝑡𝑡ℎ particle, 𝜏𝜏𝑖𝑖is the resultant torque acting about the center of 
mass of the 𝑖𝑖𝑡𝑡ℎparticle and 𝑔𝑔 is the gravitational acceleration.  

Fluid-Particle Interactions  

Hydrodynamic Forces and Torque  

The hydrodynamic drag and lift forces Fi and the torque 𝜏𝜏𝑖𝑖 about the center of mass of the 𝑖𝑖𝑡𝑡ℎ 
particle can be obtained by[16],  

 

𝐹𝐹𝑖𝑖 = (−1)∫ (𝜎𝜎. 𝑛𝑛)𝑑𝑑Γ𝑖𝑖
.
𝜕𝜕Ω𝑖𝑖

, 𝜏𝜏𝑖𝑖 = (−1)∫ (𝑋𝑋 − 𝑋𝑋𝑖𝑖) × (𝜎𝜎.𝑛𝑛)𝑑𝑑Γ𝑖𝑖
.
𝜕𝜕Ω𝑖𝑖

,  (4) 

where σ is the total stress tensor in the fluid phase defined by the Eq. (2), Xi is the position of the 
center of mass of the 𝑖𝑖𝑡𝑡ℎparticle, 𝜕𝜕𝛺𝛺𝑖𝑖  is the boundary of the 𝑖𝑖𝑡𝑡ℎparticle and 𝑛𝑛 is the outward 
drawn unit normal vector on the boundary 𝜕𝜕Ω𝑖𝑖 of the 𝑖𝑖𝑡𝑡ℎparticle. Let𝑆𝑆 be the surface of rigid 
particles 𝑛𝑛𝑠𝑠 be the inward drawn unit vector normal to the surface S of the particles and 𝑇𝑇�⃗ is the 
tangential vector given by,  
 

𝑇𝑇�⃗ = �𝑛𝑛𝑦𝑦,−𝑛𝑛𝑥𝑥�. 

Then using Eq. (4) and Eq. (2) the drag and lift forces are calculated as,  
 



𝐹𝐹𝐷𝐷 = ∫ �𝜇𝜇 𝜕𝜕𝑢𝑢𝜏𝜏
𝜕𝜕𝑛𝑛𝑠𝑠

𝑛𝑛𝑦𝑦 − 𝑝𝑝𝑛𝑛𝑥𝑥�
.
𝑠𝑠 d𝑠𝑠,𝐹𝐹𝐿𝐿 = −∫ �𝜇𝜇 𝜕𝜕𝑢𝑢𝜏𝜏

𝜕𝜕𝑛𝑛𝑠𝑠
𝑛𝑛𝑥𝑥 + 𝑝𝑝𝑛𝑛𝑦𝑦�

.
𝑠𝑠 d𝑠𝑠,  (5) 

The drag and lift coefficients are given by,  
 

𝐶𝐶𝑑𝑑 = 2𝐹𝐹𝐷𝐷
𝜌𝜌𝑈𝑈�2𝐷𝐷

,𝐶𝐶𝑙𝑙 = 2𝐹𝐹𝐿𝐿
𝜌𝜌𝑈𝑈�2𝐷𝐷

,     (6) 

where Cd and Cl are the coefficients of the drag and lift forces respectively, U is the 
characteristic velocity and D is the characteristic length. From Eq. (5) and Eq. (6), it is clear that 
surface integral in Eq. (5) can be conducted for the calculation of Cd and Cl.  

Momentum Interaction  

Let Xi be the position of the center of mass of the 𝑖𝑖𝑡𝑡ℎ particle and 𝜃𝜃𝑖𝑖be its angle, then the position 
𝑋𝑋𝑖𝑖and angle 𝜃𝜃𝑖𝑖can be obtained by integrating the following kinematic equations [12, 14], 

 
𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑈𝑈𝑖𝑖 ,
𝑑𝑑𝜃𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑖𝑖.      (7) 

 

 

Figure 2. Fluid particle interface. 

By the application of no-slip boundary conditions at the interface 𝜕𝜕𝛺𝛺𝑖𝑖 between the fluid and the 
𝑖𝑖𝑡𝑡ℎ particle, the velocity 𝑈𝑈(𝑋𝑋) ∀ 𝑋𝑋  ∈  𝛺𝛺𝑖𝑖 is given by, 

 
𝑈𝑈(𝑋𝑋) = 𝑈𝑈𝑖𝑖 + 𝜔𝜔𝑖𝑖 × (𝑋𝑋 − 𝑋𝑋𝑖𝑖),     (8) 

where 𝑈𝑈𝑖𝑖 is the translational velocity of the 𝑖𝑖𝑡𝑡ℎparticle and the second term of the sum is the 
tangential part of the angular velocity of the 𝑖𝑖𝑡𝑡ℎparticle 

 

Collision Model  

To handle particle-particle and particle-wall interaction, we employed a collision model presented 
by P. Singh et al. [1]. This is actually a discrete element method (DEM) for modeling the 



movement and collision of particles, in which new short range forces of repulsion has been 
introduced which not only stop the particles from getting very close, but it can also deal with the 
overlapping of particles when numerical simulations bring these particles very close to each other 
due to inevitable numerical errors.  

Particle-Particle interaction  

For the particle-particle collisions, the force of repulsion can be obtained as,  
 

𝐹𝐹𝑖𝑖,𝑗𝑗𝑃𝑃 =

⎩
⎪
⎨

⎪
⎧0,                                                                                for𝐷𝐷𝑖𝑖,𝑗𝑗 > 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 + 𝜌𝜌,
1
𝜖𝜖𝑝𝑝
�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 + 𝜌𝜌 − 𝐷𝐷𝑖𝑖,𝑗𝑗�

2
, for𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 ≤ 𝐷𝐷𝑖𝑖,𝑗𝑗 ≤ 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 + 𝜌𝜌,

1
𝜖𝜖𝑝𝑝′
�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗��𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 − 𝐷𝐷𝑖𝑖,𝑗𝑗�,                                      for𝐷𝐷𝑖𝑖,𝑗𝑗 ≤ 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 ,

 (9) 

where 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗  are the coordinates of the centers of the 𝑖𝑖𝑡𝑡ℎ  and 𝑗𝑗𝑡𝑡ℎ  particle respectively and 
𝐷𝐷𝑖𝑖,𝑗𝑗 = ∣ 𝑋𝑋𝑖𝑖  −  𝑋𝑋𝑗𝑗 ∣ is the distance between the centers of mass of the particles. 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗 are the 
radius of the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ particle respectively. 𝜌𝜌 is called the range of the force of repulsion and 
usually 𝜌𝜌  =  0.5 ~ 2.5∆ℎ, where ∆ℎ is the size of the mesh element. 𝜖𝜖𝑝𝑝 and 𝜖𝜖𝑝𝑝′ are small positive 
stiffness parameters for particle-particle collisions. The selection for the values of stiffness 
parameters 𝜖𝜖𝑝𝑝  and 𝜖𝜖𝑝𝑝′are such that they do not cause a discontinuity or singularity. For a 
sufficiently viscous fluid, and 𝜌𝜌 ≃ ∆ℎ as well as 𝜌𝜌𝑖𝑖 ⁄ 𝜌𝜌𝑓𝑓 are of order 1 (𝜌𝜌𝑖𝑖is the density of the 𝑖𝑖𝑡𝑡ℎ 
particle and 𝜌𝜌𝑓𝑓 is the fluid density), then the values of 𝜖𝜖𝑝𝑝 ≃ (∆ℎ)2 and 𝜖𝜖𝑝𝑝′ ≃ ∆ℎ are used in the 
calculations  

Particle-Wall interaction  

For the particle-wall collisions, the corresponding force of repulsion is expressed by,  
 

𝐹𝐹𝑖𝑖𝑊𝑊 =

⎩
⎪
⎨

⎪
⎧0,                                                            for𝐷𝐷𝑖𝑖′ > 2𝑅𝑅𝑖𝑖 + 𝜌𝜌,             

1
𝜖𝜖𝜔𝜔

(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖′)(2𝑅𝑅𝑖𝑖 + 𝜌𝜌 − 𝐷𝐷𝑖𝑖′)2,         for 2𝑅𝑅𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖′ ≤ 2𝑅𝑅𝑖𝑖 + 𝜌𝜌,
1
𝜖𝜖𝜔𝜔′

(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖′)(2𝑅𝑅𝑖𝑖 − 𝐷𝐷𝑖𝑖′)2,                  for𝐷𝐷𝑖𝑖′ ≤ 2𝑅𝑅𝑖𝑖,                      
  (10) 

where 𝑋𝑋𝑖𝑖′ is the coordinate of the center of mass of the nearest imaginary particle 𝑃𝑃𝑖𝑖′ imagined on 
the boundary wall 𝛤𝛤 with respect to the 𝑖𝑖𝑡𝑡ℎ particle, 𝐷𝐷𝑖𝑖′  = ∣ 𝑋𝑋𝑖𝑖  −  𝑋𝑋𝑖𝑖′ ∣ is the distance between 
the center of the imaginary particle 𝑃𝑃𝑖𝑖′ and the mass center of 𝑖𝑖𝑡𝑡ℎ particle. 𝜖𝜖𝑤𝑤 and 𝜖𝜖𝑤𝑤′ are small 
positive stiffness parameters for particle-wall collisions, usually their values can be taken as 
𝜖𝜖𝑤𝑤 = 𝜀𝜀𝑝𝑝/2 and 𝜖𝜖𝑤𝑤′ =   𝜖𝜖𝑝𝑝′ /2 in the calculations.  

Numerical Implementation  

Multigrid Solver  

Multigrid methods were invented for PDEs like Poisson’s equation. However, these methods also 
work on large number of problems. Contrary to other iterative methods, the convergence rate of 
multigrid method is independent of problem size. For an introduction to multigrid, the reader is 



referred to the book of Hackbush[17]. We can use multigrid approach to solve the fluid particle 
interaction problems which is based on number of grids, obtained by regularly refining the coarse 
mesh. For CFD problems, multigrid is one of the fastest linear solver [18]. In multigrid, 
restriction is applied to the residual after smoothing on all mesh levels, and direct sparse linear 
solver [19] is used to get the solution on coarsest grid, if the number of degrees of freedom is 
sufficiently small. Then prolongation is applied followed by post-smoothing to obtain better 
approximation. These steps continue until the iterations of multigrid cycle (V or F-cycle) is 
finished. With the help of some operators, here we explained how multigrid works on a problem 
using different grid levels. 

The multigrid procedure to solve the linear system 𝐴𝐴𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑏𝑏𝑖𝑖, is presented in the following steps.  
• Multigrid starts with an initial guess on fine grid level 𝑖𝑖, i.e., 𝑢𝑢𝑖𝑖0and executes pre-

smoothing to obtain more accuracy 
 

𝑢𝑢𝑖𝑖
𝑗𝑗+1 = 𝑆𝑆𝑖𝑖�𝑢𝑢𝑖𝑖

𝑗𝑗�, 𝑗𝑗 = 0, … ,𝑚𝑚 − 1. 

where Si is the smoothing operator and it computes the first improved approximation to 
the system 𝐴𝐴𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑏𝑏𝑖𝑖.  

• The high frequency of the residual is sufficiently smoothed by pre-smoothing so that the 
remaining error shows high frequency on a coarser grid, 

𝑟𝑟𝑖𝑖−1 = 𝑅𝑅𝑖𝑖𝑖𝑖−1(𝑏𝑏𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑢𝑢𝑖𝑖𝑚𝑚), 

where,𝑅𝑅𝑖𝑖𝑖𝑖−1 is the restriction operator from a finer grid to coarser grid which gives coarser 
grid approximation. 

• Solve the system  

𝐴𝐴𝑖𝑖−1𝑢𝑢𝑖𝑖−1∗ = 𝑟𝑟𝑖𝑖−1, 

 
on the coarser grid to get the correction 𝑢𝑢𝑖𝑖−1∗ . 

• Prolongate the correction 𝑢𝑢𝑖𝑖−1∗ to the finer grid level and apply 
 

𝑢𝑢𝑖𝑖𝑚𝑚+1 = 𝑢𝑢𝑖𝑖𝑚𝑚 + 𝛼𝛼𝑖𝑖𝑃𝑃𝑖𝑖−1𝑖𝑖 𝑢𝑢𝑖𝑖−1∗ , 

where𝑃𝑃𝑖𝑖−1𝑖𝑖 is the prolongation operator from coarser grid to next finer grid and 𝛼𝛼𝑖𝑖is the 
damping parameter. 

• Execute the post smoothing steps to get the final solution 𝑢𝑢𝑖𝑖𝑚𝑚+1+𝑛𝑛. 

By applying these steps recursively on different grid levels, faster reduction of error is achieved. 
Appropriate algorithms for restriction, prolongation, smoother and solver components have to be 
chosen to get accuracy and efficiency. Fig. 3 shows a schematic diagram of multigrid V-cycle 
(MGV), multigrid W-cycle (MGW) and multigrid F-cycle (MGF).  

 
 



 
Figure 3. MGV, MGW and MGF cycles 

The basic idea for the construction of multigrid V-cycle (MGV) or multigrid F-cycle (MGF) 
algorithm is as follows.  
 

Algorithm 1. Multigrid V-Cycle 

function MGV(𝑏𝑏𝑖𝑖, 𝑢𝑢𝑖𝑖) 
replace the approximate solution𝑢𝑢𝑖𝑖of the system𝐴𝐴𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑏𝑏𝑖𝑖with an improved solution 
if𝑖𝑖 = 1 
compute the exact solution𝑢𝑢1 
return𝑢𝑢1 
else  

• 𝑢𝑢𝑖𝑖 = 𝑆𝑆�𝑏𝑏𝑖𝑖 ,𝑢𝑢𝑖𝑖�, 
• 𝑟𝑟𝑖𝑖 = 𝐴𝐴𝑖𝑖 .𝑢𝑢𝑖𝑖 − 𝑏𝑏𝑖𝑖, 
• 𝑑𝑑𝑖𝑖 = 𝑃𝑃 �𝑀𝑀𝑀𝑀𝑀𝑀�𝑅𝑅�𝑟𝑟𝑖𝑖�, 0��, 
• 𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑑𝑑𝑖𝑖, 
• 𝑢𝑢𝑖𝑖 = 𝑆𝑆�𝑏𝑏𝑖𝑖 ,𝑢𝑢𝑖𝑖�, 

return𝑢𝑢𝑖𝑖 
end if  

 

 
Algorithm 2.Full Multigrid (FMG)  

function MGF(𝑏𝑏𝑖𝑖,𝑢𝑢𝑖𝑖) 
return an accurate solution𝑢𝑢𝑖𝑖of the system 𝐴𝐴𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑏𝑏𝑖𝑖 
solve𝐴𝐴1𝑢𝑢1 = 𝑏𝑏1exactly to get𝑢𝑢1 
for 𝑖𝑖 = 2to𝑘𝑘 

𝑢𝑢𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑏𝑏𝑖𝑖,  𝑃𝑃(𝑢𝑢𝑖𝑖)) 
end for  
 

 



Fictitious Boundary Method  

Several approaches have been presented using fictitious boundary method to deal with the 
particles in the fluid and to calculate the hydrodynamic forces acting on the particles. Glowinski, 
Joseph and coauthors [8] described a semi-implicit approach to calculate the drag and the lift 
forces acting on the particles in the fluid and study their movement in the fluid. Patankar, Singh, 
Joseph, Glowinski and co-authors [20] also used an implicit scheme for the particle treatment. 
Wan and Turek[13] proposed an explicit way to treat the moving particles inside the fluid and the 
explicit calculation of the drag and the lift forces acting on the particles. Here we are presenting a 
brief description of multigrid FEM fictitious boundary method, for details reader is referred to the 
articles[11-13].  

This multigrid fictitious boundary method is based on FEM background grid which covers the 
whole computational domain 𝛺𝛺𝑇𝑇. The grid can be chosen independent of solid particles arbitrary 
shape, size and number. The multigrid FBM starts with a coarse mesh which may already 
describes the geometrical details of particles 𝛺𝛺𝑖𝑖(𝑖𝑖 = 1,  2,   . . . . ,  𝑁𝑁)  and a boundary 
parametrization with respect to the boundary conditions of Eq. (8) which sufficiently depict all 
fine-scale structures of the particles. The internal solid objects are introduced in the 
corresponding components in all matrices and vectors in the solution process as unknown degrees 
of freedom. Then, the extra conditions arising due to the interior objects are incorporated 
implicitly in all the iterative solution steps. Hence, by using Eq. (8), the computations can be 
carried out on the whole domain ΩT for the fluid. The FBM has a considerable advantage that the 
computational domain does not require to be changed with time, and no re-meshing is required. 
More precisely, the mesh and the flow features can be handled independent of each other [11, 
13]. Hence using the FBM, the domain of definition of the fluid velocity u is extended according 
to Eq. (8) which can be seen as an additional constraint to the Navier-Stokes equations.  

 

�

∇.𝑢𝑢 = 0,                                                                 ∀ 𝑋𝑋 ∈ Ω𝑇𝑇 ,      
𝜌𝜌𝑓𝑓 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢.∇𝑢𝑢 = 0� − ∇.𝜎𝜎 = 0,                         ∀ 𝑋𝑋 ∈ Ω𝑓𝑓 ,        

𝑢𝑢(𝑋𝑋) = 𝑈𝑈𝑖𝑖 + 𝜔𝜔𝑖𝑖 × (𝑋𝑋 − 𝑋𝑋𝑖𝑖),       ∀ 𝑋𝑋 ∈ Ω�𝑖𝑖,   𝑖𝑖 = 1,2,3, … ,𝑁𝑁.
   (11) 

 

Calculation of Hydrodynamic Forces and Torque  

In particulate flows, the calculation of the hydrodynamic forces and torque acting on the particles 
moving in the fluid is very important for the study of interactions between the fluid and the 
particles. Let 𝛺𝛺𝑇𝑇 = 𝛺𝛺𝑓𝑓 ∪ {𝛺𝛺𝑖𝑖}𝑖𝑖=1𝑁𝑁  be the total computational domain including domain occupied 
by the particles and the fluid. Let 𝑛𝑛 be the unit vector drawn normal to the boundary 𝜕𝜕𝛺𝛺𝑖𝑖  of 
𝑖𝑖𝑡𝑡ℎparticle pointed outward to the flow region. To calculate the hydrodynamic forces𝐹𝐹𝑖𝑖acting on 
the surface of the 𝑖𝑖𝑡𝑡ℎparticle and the torque 𝜏𝜏𝑖𝑖acting about the mass center of the 𝑖𝑖𝑡𝑡ℎparticle, the 
surface integrals on the wall surface of the particle given by Eq. (4) should be conducted. Wan 
and Turek[13] proposed a volume integral approach rather than the surface integral approach for 
the calculation of hydrodynamic forces and torque acting on the solid bodies moving in the fluid. 
In [13], they replaced the surface integral in Eq. (4) by a volume integral, which is 
computationally less expensive, by defining an auxiliary function 𝛼𝛼𝑖𝑖,  
 



𝛼𝛼𝑖𝑖 = �
1, 𝑋𝑋 ∈ Ω𝑖𝑖,
0, 𝑋𝑋 ∈ Ω𝑓𝑓 ,      (12) 

The gradient of 𝛼𝛼𝑖𝑖 , is zero everywhere except on the wall surface of the 𝑖𝑖𝑡𝑡ℎparticle, and at the 
wall surface the gradient equals to the unit vector n normal to the wall surface of the 𝑖𝑖𝑡𝑡ℎ particle, 
i.e,  
 

𝑛𝑛 = ∇𝛼𝛼𝑖𝑖.      (13) 

 

Figure 4. Cells where 𝛂𝛂𝐢𝐢 = 𝟏𝟏 and 𝛁𝛁𝛂𝛂𝐢𝐢 = 𝐧𝐧 on the particle’s boundary. 

Then for the calculation of hydrodynamic forces and torque, the surface integral in Eq. (4) can be 
replaced by volume integral as,  
 

𝐹𝐹𝑖𝑖 = (−1)∫ (𝜎𝜎.∇𝛼𝛼𝑖𝑖)𝑑𝑑Ω
.
Ω𝑇𝑇

,𝑇𝑇𝑖𝑖 = (−1)∫ (𝑋𝑋 − 𝑋𝑋𝑖𝑖) × (𝜎𝜎.∇𝛼𝛼𝑖𝑖)𝑑𝑑Ω
.
Ω𝑇𝑇

.  (14) 

The volume integral over each element covers the total domain ΩT can be truly calculated with 
the help of a standard Gaussian quadrature of sufficiently higher order. As the gradient of 𝛼𝛼𝑖𝑖, i.e. 
𝛻𝛻𝛼𝛼𝑖𝑖 is non-zero on the wall surface of the 𝑖𝑖𝑡𝑡ℎ particle, therefore the volume integrals in Eq. (14) 
required to be evaluated only in one layer of mesh cells around the 𝑖𝑖𝑡𝑡ℎparticle, which is very 
effective treatment.  

Calculation of Drag and lift coefficients  

By using Eq. (2) and Eq. (13), the surface integral in Eq. (5) is replaced by volume integral for 
the calculation of drag and lift forces acting on the particles in fluid. Such that,  

 

𝐹𝐹𝐷𝐷 = −∫ �𝜇𝜇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑝𝑝 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑Ω.

𝜕𝜕Ω𝑇𝑇
,    (15) 

 𝐹𝐹𝐿𝐿 = −  ∫ �𝜇𝜇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑝𝑝 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑Ω.

𝜕𝜕Ω𝑇𝑇
,     (16) 



Therefore, through Eq. (15), Eq. (16) and Eq. (6) the drag and lift coefficients Cd and Cl can be 
calculated by conducting the volume integral over the total domain ΩT rather than the surface 
integral conducted over the wall surface of the rigid bodies in Eq. (5).  

Simulation Results and Discussions  

Flow around a cylinder (benchmark)  

For this benchmark case, we test the fluid flow around a fixed circular cylinder. The width and 
height of the channel is 2.2 and 0.41 respectively. The radius of the circular cylinder is 0.05 and 
its center is fixed at point (0.2, 0.2). No-slip boundary conditions are imposed at upper and lower 
walls as well as on the surface of cylinder. The left boundary of the channel is an inlet, at this 
boundary a parabolic profile is defined for the inflow with maximum velocity U = 0.3 at the 
center of the channel,  
 

𝑈𝑈(0,𝑦𝑦) = �
4𝑈𝑈𝑦𝑦(0.41 − 𝑦𝑦)

(0.41)2 , 0�, 

where y is along the height of the channel. For outflow, do-nothing boundary condition is defined 
on the right edge. The fluid density 𝜌𝜌𝑓𝑓 = 1, where Reynolds number Re = 20 with mean velocity 
𝑈𝑈  =  2𝑈𝑈(0,  𝑦𝑦)/3. We use a locally refined fixed Cartesian mesh as shown in Fig. 5 with number 
of elements NEL = 132 at mesh refinement level LVL − 1 (numberofrefinements). This coarse 
mesh is refined by connecting midpoints of opposite edges of an element, so an element divides 
in to four elements after every refinement. We noticed that at Re = 20 the flow turns into 
stationary. Fig. 6 shows the stationary profiles of pressure, velocity and stream function.  
 

 
Figure 5.Fixed Cartesian mesh 



 

 
Figure 6. Stationary flow profiles 

 

Table 1.Drag 𝑪𝑪𝒅𝒅 and Lift 𝑪𝑪𝒍𝒍 coefficients 

Level NEL VEF(%) 𝑪𝑪𝒅𝒅 𝑪𝑪𝒍𝒍 
3 2112 95.493 5.3006 0.0079 
4 8448 97.482 5.4211 0.0071 
5 33,792 99.472 5.4891 0.0100 
6 135,168 99.721 5.5456 0.0098 
7 540,672 99.814 5.5573 0.0101 

Reference values 5.5795 0.0106 
 
We calculate the drag coefficient Cd and lift coefficient Cl at different mesh refinement levels 
and the results are presented in table-1. VEF is the ratio of area of cylinder covered by mesh to 
the actual area of cylinder. All the results are convergent and results of LVL − 7 shows a good 
agreement with the reference values [21]. From the data,it is clear that by increasing mesh 
refinement level one can achieve the desired accuracy. 

A circular particle settling  

We now consider a single circular particle of radius R = 0.125 in a rectangular channel of width 2 
and height 6. At time t = 0, the particle is placed at point (1, 4), initially both the particle and 
incompressible fluid are at rest. As the time passes this particle starts falling downward under the 
action of gravity with gravitational acceleration g = 980. The density of the fluid 𝜌𝜌𝑓𝑓 = 1 and its 
viscosity ν = 0.1 or 0.01, where the density of particle 𝜌𝜌𝑖𝑖 is selected as 1.25 or 1.5. We use a fixed 



equidistant mesh with number of elements NEL = 432 at mesh refinement level LVL = 1. The 
simulations are done on refinement level LVL = 5 and LVL = 6 having NEL = 110, 592 and 
NEL = 442, 368 respectively.  

The maximum Reynolds number for a particle during its settling in the fluid is presented in 
Table − 2. The maximum value of the Reynolds number is obtained from the expression 
𝑅𝑅𝑅𝑅 =   √(𝑢𝑢(𝑡𝑡)2 + 𝑣𝑣(𝑡𝑡)2).𝐷𝐷. 𝜌𝜌𝑖𝑖/𝜈𝜈, where u(t) and v(t) are the x and y − component of particle 
velocity at time t respectively and D is the diameter of the particle. We observed that, when the 
particle is dense and fluid viscosity is small the value of maximum Reynolds number is high, the 
particle moves much faster and the symmetry breaking is more obvious. For higher fluid 
viscosity, the flow stays laminar whereas for smaller viscosity flow become turbulent and 
unstable. The present results show a good agreement with the reference results presented in Ref. 
[22].  

 
Table 2. Maximum Reynolds numbers 

Level 𝝂𝝂  =  𝟎𝟎.𝟏𝟏 𝝂𝝂  =  𝟎𝟎.𝟎𝟎𝟎𝟎 
𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟐𝟐𝟐𝟐 𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟓𝟓 𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟐𝟐𝟐𝟐 𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟓𝟓 

5 16.679 31.535 273.58 464.98 
6 16.307 30:686 280:36 482.28 

 

 
Figure 7. Snapshots of single particle settling at time t = 0, 0.1, 0.2, 0.3 and 0.4respectively. 



 

 
Figure 8. Snapshots of single particle settling at time t = 0.5, 0.6, 0.7, 0.8 and 0.9 
respectively. 

 
 
 
 

 
Figure 9. A circular particle settling in fluid with 𝝂𝝂  =  𝟎𝟎.𝟏𝟏,  𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟓𝟓, time histories of 

vertical component of velocity (left) and vertical component of its center of mass (right). 

 



 
Figure 10. A circular particle settling in fluid with ν = 0.1,  𝝆𝝆𝒊𝒊 = 𝟏𝟏.𝟓𝟓, time histories of its 

translational (left) and rotationalkinetic energy (right). 

 
Fig. 7 and Fig. 8 shows the snapshots of velocity fields during the particle sedimentation at 
different time steps. The plots of vertical component of particle velocity and position are shown 
in Fig. 9 when the particle density 𝜌𝜌𝑖𝑖 = 1.5 and fluid viscosity ν = 0.1. Whereas the Fig. 10 
shows the translational kinetic energy and rotational kinetic energy of particle with respect to 
time.  

A big particle diving in to small particles  

The intent of this case is to show that this method is suitable for more complex problems and it 
can handle large number of particles very well. We consider 2000 small circular particles each of 
radius 0.025 and a big particle of radius 0.2 in a rectangular cavity of width 4 and height 2. The 
small particles are settled at the bottom of the cavity, filled with an incompressible fluid of 
density 𝜌𝜌𝑓𝑓 = 1, and the center of the big particle is located at point (0.2, 3.8), as shown in Fig.11. 
Initially all the particles, big particle and fluid are at rest when time t = 0. The range of repulsive 
force ρ = 0.01, where the stiffness parameter 𝜖𝜖𝑝𝑝 = 10−7. A uniform fixed mesh is used with mesh 
element size ∆ℎ = 0.1 and number of elements NEL = 800 at mesh refinement level LVL − 1. 
We simulate three cases with Reynold’s number Re = 100 by choosing different densities of big 
particle, where density of small particles is same in each case i.e.𝜌𝜌𝑖𝑖 = 1.5. Simulations are carried 
out on refinement level LVL = 5 with NEL = 204, 800.  
 

 
Figure 11. Initial position of particles 



Case-1  

The density of big particle is 𝜌𝜌𝑠𝑠 = 1.1, less than the density of small particles 𝜌𝜌𝑖𝑖. From Fig.12,we 
can see that the big particle dig into small particles and then emerge out quickly and stay on top 
of small particles because of the strong blockage effect of the small particles  
 

  

 
Figure 12. Velocity fields at different time instants. 

Case-2  

The density of big particle is𝜌𝜌𝑠𝑠 = 1.5, equal to the density of small particles 𝜌𝜌𝑖𝑖. The big particle 
dives into small particles and penetrate slowly into them reaches the bottom of the cavity and at 
the end settles there, see Fig. 13. 
 

  



 
Figure 13. Velocity fields at different time instants. 

Case-3  
The density of big particle is𝜌𝜌𝑠𝑠 = 2, greater than the density of small particles 𝜌𝜌𝑖𝑖.  
 

  

 
Figure 14. Velocity fields at different time instants. 

Fig. 14 shows the big particle push the small particles away from itself and continuously fall until 
it hits the bottom. This big particle generates some irregular waves at the interface between small 
particles and the fluid. 

Sedimentation of 10,000 particles 

Finally, we consider 10, 000 circular particles in a rectangular cavity of width 5 and height 8. The 
particles are placed in rows at the top of the cavity and in each row there are 100 particles. The 
radius of each particle is 0.025 and initially at time t = 0 the fluid and all the particles are at rest. 
The density of incompressible fluid 𝜌𝜌𝑓𝑓 = 1, density of solid particles 𝜌𝜌𝑖𝑖 = 1.5 and Reynolds 
Re = 100. The range of repulsive force ρ = 0.01 where the stiffness parameter 𝜖𝜖𝑝𝑝 = 10−5 . A 
uniform fixed mesh is used with mesh element size ∆ℎ = 0.00625  and number of elements 
NEL = 1, 024, 000 at mesh refinement level LVL − 5. 
 



 
Figure 15. Snapshots of sedimentation of 10,000 particles at time t = 0, t = 1, t = 2, and t = 3 

respectively. 

 

 
Figure 16. Snapshots of sedimentation of 10,000 particles at time t = 4, t = 5, t = 6, and t = 7 

respectively. 



 
Figure 17. Snapshots of sedimentation of 10,000 particles at time t = 8, t = 9, t = 10, and 

t = 11 respectively. 

 

 
Figure 18.Snapshots of sedimentation of 10,000 particles at time t = 12, t = 13, t = 14, and 

t = 15 respectively. 

Fig.15 to 18 shows the snapshots of the velocity fields for 10,000 settling particles at different 
time steps. The development of Rayleigh-Taylor instability is clearly shown in these pictures. 
This instability develops into a fingering and text-book phenomenon, and many symmetry 
breaking and other bifurcation phenomena including drafting, kissing and tumbling take place at 
various scales in space and time. We can see that many complex vortices of different size have 
been formed, these vortices pull the particles down and mix them with each other. Some very 
strong eddies are formed and we can see that these eddies boost the particles and push them 
almost back to the top of the channel. At the end, all the particles settle down at the bottom of 
channel and the fluid again comes to rest.  

Conclusions  

In this paper, we have presented a direct numerical simulation technique multigrid FEM fictitious 
boundary method for the 2D simulation of solid–liquid two phase flows. We successfully 



simulate benchmark case of flow around a fixed cylinder and perform numerical experiments to 
examine single particle settling in a channel. The accuracy of the presented method has been 
proved by comparing our results with the corresponding reference results available in literature. 
Further we simulate more complex problems with large number of particles to test the efficiency 
of our method and inspect its potential to simulate real particulate flows. Results from the 
numerical examples of one big particle diving into 2000 small particles and sedimentation of 
10,000 particles shows that multigrid fictitious boundary method is computationally less 
expensive and it can handle large number of particles easily. We conclude that the presented 
method is computationally cheap and its implementation is very simple and straight forward, as it 
treats the fluid part, the calculation of hydrodynamic forces and the motion of particle in a sub-
sequential way. Finally, the presented method is based on Navier-Stokes equations and it is quite 
simple to extend it to study heat transfer in solid-liquid two phase flows using Boussinesq 
approximation and will be discussed in our upcoming article.  
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