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Abstract 
A meshfree method based on moving least square (MLS) approximation is used to study the 
vibration of the strain gradient plates. A high-order shifted and scaled polynomial basis is 
proposed to deal with the strain gradient elastic plates described by higher order differential 
equation. The natural frequencies of the strain gradient plates and classic Kirchhoff plates 
with elastically supported boundary are obtained by the MLS method. The natural frequencies 
of the strain gradient plates obtained by the meshfree method are in good agreement with the 
theoretical results for all boundaries simply supported case. Finally, the MLS method is used 
to study the vibration of the strain gradient plates with different boundary conditions and the 
nonlocal parameter which show the small scale effects. 
 
Keywords: Shifted and scaled polynomial basis, MLS method, Strain gradient, Scale effect, 
Elastic boundary condition 

Introduction 

In micro or nano-scale, the classic continuum mechanics might be invalid to describe size 
effects due to the absence of additional material length scale parameters in constitutive laws. 
In 1960s, Toupin [1] and Mindlin [2][3] introduced high-order gradient terms into the 
classical constitutive relation. They established the strain gradient elastic theory, which can 
take the influence of the long range force and the effects microstructure into its constitutive 
relation. Papargyri-Beskou et al. [4][5] took the strain gradient elastic theory into the 
Bernoulli-Euler beam model. They analyzed the scale effect of bending, buckling and 
vibration of the beam. Further, Papargyri-Beskou and Beskos [6] derived the governing 
equations of Kirchhoff plates with strain gradient taken into account. They obtained analytic 
solutions for statics, dynamics and stability of simply supported plate. 

All of above mentioned works deal with elastic structures with clamped boundary, free 
boundary or simply supported boundary, but elastic boundary condition is more practical. 
Jiang et al. [7] investigated the vibrational behaviors of single-walled carbon nanotubes 
bridged on a silicon channel using a three-segment Timoshenko beam model and a one-
segment Timoshenko beam model with elastic boundaries together with molecular dynamics 
simulation. Li et al. [8] developed an analytical method for the vibration analysis of 
rectangular plates with elastic restrained edges. The displacement solution is expressed as a 
two-dimensional Fourier series with several supplemented series. Kiani [9] investigated the 
free transverse vibration of an elastically supported double-walled carbon nanotubes 
embedded in an elastic matrix under initial axial stress using reproducing kernel particle 
method.  



 

The theoretical methods can only deal with the mechanical model of structures with simple 
boundary conditions. The finite element method (FEM), as an effective numerical tool, 
provides a feasible way to investigate complex nonlocal elastic structures with complex 
boundary condition . Engel et al. [10] presented a new continuous/discontinuous finite 
element method for fourth-order elliptic partial differential equations and applied it to 
structural of strain gradient elasticity. In order to study a strain gradient Kirchhoff plates with 
the van der Waals interactions, Xu et al. [11][12] proposed a 4-node 24-degree of freedom 
Kirchhoff plates element to discretize the sixth order partial differential equation with the 
small scale effect taken into consideration by the theory of virtual work. Soh and Chen [13] 
proposed the displacement function of the two kinds of elements based on the couple stress 
theory or the strain gradient theory. After Belytschko [14] putting forward the element free 
Galerkin method, various meshfree methods have been developed and applied to of static and 
dynamic problems of wide field. The meshfree method does not need girds, and the meshfree 
shape function has better continuity and smoothness. Furthermore the finite element method 
needs more degrees of freedom [11][12] at each node, whereas only one degree freedom is 
needed for one node in this paper using meshfree method when high-order partial differential 
equation of strain gradient theory is considered. Liu and Gu [15] proposed a point 
interpolation meshfree method based on combining radial and polynomial basis functions. 
The radial basis function overcomes possible singularity associated with the meshfree 
methods based on the polynomial basis. Liu et al. [16] presented an edge-based smoothed 
FEM (ES-FEM) to significantly improve the accuracy of the FEM without much changing to 
the standard FEM settings. The ES-FEM is applied in static, free and forced vibration 
analyses of solids. Liu [17][18] proposed a G space theory and a weakened weak form (W2) 
using the generalized gradient smoothing technique for a unified formulation of a wide class 
of methods. The W2 formulation works for both FEM settings and meshfree settings. W2 
models have special properties including softened behavior, upper bounds and ultra accuracy. 
Some applications of the G space theory to formulate W2 models for solid mechanics 
problems were presented [18]. Wang et al.[19] studied the resonant frequencies and the 
associated vibration modes of an individual double-walled carbon nanotube, using gradient 
smoothing technique. Sun and Liew [20] developed a mesh-free method to deal with bending 
and buckling behaviors of single-walled carbon nanotubes. The results were compared with 
those obtained with a full atomistic simulation, and it revealed that the developed meshfree 
method can accurately simulate the bending deformation of single-walled carbon nanotubes. 
Xiang et al. [21] evaluated the influences of high-order terms on accuracy of the mechanical 
behaviors of microtubules. A specific meshless computational scheme based on third-order 
deformation gradient continuum was developed to suit the third-order Cauchy-Born rule for 
the mechanical simulation of microtubules. Yan et al. [22] investigated the free vibration 
characteristic of single-wall carbon nanocones by using a developed meshless computational 
framework based on moving Kriging interpolation. The proposed model can give a good 
prediction of the MD simulation and Timoshenko beam model. To the best knowledge of the 
authors, there is little work on the vibration of the strain gradient plates with elastic boundary 
conditions by using MLS method containing the higher order partial derivative of shape 
function. 

The primary objective of this work is to investigate the vibration of the strain gradient plates 
with elastic boundary conditions. Next, the MLS method with a new shifted and scaled 
polynomial basis to approximate the field function are proposed in Section 2. Discretization of 
the governing equations for the strain gradient plates is presented in Section 3. The vibration 
characteristics of the strain gradient plates with elastic boundary condition are studied in 
Section 4. Finally, some concluding remarks are drawn in Section 5. 



2. The moving least square (MLS) method 

This section gives a brief summary of the MLS approximation scheme used in the following 
section. The approximate function ( )hu x  is constructed by MLS method. It can be expressed 
as 
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where ( )ip x  are the monomial basis function. A new shifted and scaled basis is used for 
constructing approximate function ( )hu x [23][24]. In Equation (1), ( )ia x  is the corresponding 
coefficients, q is the number of the basic functions.  
For two dimensional problems, the basic functions with 36 terms are as following  
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For ( ),e e ex y=x , ex  is specified to be Gauss point. In Equation (2), h is defined as [23] 
 1 ,1
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The weighted discrete L2 norm is given as 

 2

1
( )[ ]

N

I I
I

J w u
=

= − −∑ Tx x p (x)a(x) , (4) 

where a new weight function ( )w r is given as 
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where the normalized distance Ir  is defined as 
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with Id being the size of the support domain of node I. For a rectangular support, Id  can be 
denoted as 

max I

max I

d d ,
d d ,
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x d x
y d y
= ⋅
= ⋅    (7) 

where Id bx  and Id by  refer to the distances between two adjacent nodes along x and y 
directions,  respectively, and maxd  denotes the scaling factor.  
After the minimization of the weighted discrete L2  norm with respect to ( )a x , it can be 
expressed as 
 ( ) = -1a x A (x)B(x)u .  (8) 
Substituting Equation (8) into Equation (1), the expression of approximation ( )hu x  is given by 
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where the shape function is given as[25] 
 ( ) ( ) ( ) ( ) ( )I wφ = − T

I Ix x x p x A x P x .  (10) 
The above shape function can be used to deal with the vibration problems of the strain 
gradient plates. 

3. Discretization of the governing equations for strain gradient plates 

Here a square plate made of strain gradient material with elastic boundary containing 
translational and rotational spring is considered, as shown in Figure 1. 

 
Figure 1. A square plate with elastic boundary 

The constitute relation of the strain gradient theory is given as [26] 
 ( )2 2+g= ∇Hσ ε ε , (11) 
where σ and ε are the stress and strain vectors, respectively, g is the intrinsic scale parameter 
to capture the size effect, 2 2 2 2 2x y∇ = ∂ ∂ + ∂ ∂ denotes the Laplacian operator. For plane stress 
problem H is given as 
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where µ  is the Poisson ratio.  
According to theory of Kirchhoff plate, the strain of the plate can be written as 
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Substituting Equation (12) and (13) into Equation (11) results in  
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So the strain energy of the plate can be given as 
 ( )dp x x y y xy xyV

V Vσ dε σ dε τ dγ= + +∫∫∫ .  (15) 
The displacement function is assumed as 
 ( , , ) ( , ) j tw x y t W x y e w= ,  (16) 
where ( , )W x y is the mode function, w is the natural frequency and 1j ≡ − . 
The kinetic energy of rectangular plate can be expressed as 
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The potential energy of elastic boundary containing translational spring and rotational spring 
is 
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where k and K are translational spring stiffness and rotational spring stiffness, respectively. kΓ  
and KΓ  are the boundary with linear translational spring and rotational spring, respectively. 
The energy of the transverse vibration of the plates ignoring body force and surface force can 
be given as 

 ( )dp sT V V V
Ω

Π = − −∫ . (19) 

The penalty function method is used to deal with the simple supported and clamped boundary 
conditions. So, according to Hamilton principle, one can get 
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where 1α  2α  are penalty coefficient of linear displacement and angular displacement, 
respectively. In this paper 4

1 2 1.0 10 Eα α= = ×  is used. w  and θ are the given linear 
displacement and angular displacement, respectively.  
Inserting Equation (19) into Equation (20), one can get 
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Integrating the forth order partial derivative by part, then using the Stokes formula, then 
The first term of Equation (21) is given as 
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where D0 is bending stiffness: ( )3 2
0 12 1D Eh µ= − . 

According to MLS method, one can get 
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where ,kw , ,klw , ,klfw  refer to the first the second and the third order partial derivatives of w , 
respectively, and k, l, f mean x or y. 

Substituting Equation (17), (18), (22) into Equation (20), Then inserting Equation (23) into 
Equation (20), one can get 
 2w− =K M 0 .  (24) 
where K  is the global stiffness matrix, M  is the global mass matrix. 
Furthermore, K can be expressed by another form 
 p s α= + +K K K K .  (25) 
where pK  is assembled by nodal stiffness, which is defined as  
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where sK  is assembled by 
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For the case of 0w =  and 0θ = , the element of the αK  for the displacement boundary 
condition can be given as 
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So the element of stiffness matrix of the strain gradient plates with elastic boundary is 
 p s

IJ IJ IJ IJK K K Kα= + + .  (31) 
In Equation (24), the M  is assembled by  
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So, the natural frequency of the strain gradient plates can be calculated. 



4. Vibration of the strain gradient plates with elastic boundary conditions 

In this section, a square nanoplate with side length nma b= = 5  and thickness h=0.11nm is 
considered. The Young’s Modulus of the plate is E=2.28TPa, the Possion’s ratio v=0.41, the 
density 3 37.016 10 kg mρ = × , the scale parameter g=0.0355nm. The scaling factor max 6d =  is 
adopted in this paper.  

In order to verify the applicability of the MLS method to solve the strain gradient nanoplate 
with simply supported boundary, the natural frequencies of the square strain gradient plate are 
presented in Figure 2. It can be seen that the meshless solution is in good agreement with 
exact solution in Figure 2 (a). Frequency ratio of the meshless solution is in good agreement 
with exact solution, as show in Figure 2 (b). The natural frequencies of the strain gradient 
plate with simply supported boundary is given as [11][12] 
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where a, b are length and width , respectively, and m, n are half-wave number along x axis 
and y axis, respectively. 
The strain gradient plate will be degenerated into the classic Kirchhoff plate, when the 
intrinsic scale parameter g=0. The natural frequencies of classical simply supported Kirchhoff 
plate can be expressed as 
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The frequency ratio of the strain gradient plate to the classical Kirchhoff plate can be 
expressed as 
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These proves the applicability of MLS in solving the strain gradient plate with simple 
supported boundary condition. 
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Figure 2. The natural frequency and the frequency ratio using meshfree methd and analytic 
method. (a) Natural frequency of the strain gradient plate via MLS method compared with 
Exact solution (b) Frequency ratio for the strain gradient plate via MLS method compared 
with Exact solution. 
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Figure 3 present the first order frequency of the 5nm×5nm nanoplate with different scale 
parameters. Here 41×41 nodes are used and g=0.0355nm. It can be seen that the meshless 
result and exact result match reasonably well for most case. But the different of natual 
frequencies at point 0.9g and 1.2g is obviously. Nevertheless the meshless result is very close 
to the  exact, because the maximum error are 0.222‰ at the point 0.9g and 0.569‰ at the 
point 1.2g. 

The natural frequency of the simply supported classic Kirchhoff plates with uniform rotational 
restraint along edges is presented in Table 1. The translational degree of freedom of all 
boundaries fixed. It can be easily seen from Table 1 that these three sets of results match very 
well with each other. It shows the applicability of MLS in solving plate with elastic boundary. 
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Figure 3. The first order frequency of  
nanoplate with different scale parameters 
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Table 1. Natural frequency parameter of the classic Kirchhoff plates with uniform rotational 
restraint along edges. 

Ka D  
2 h Dw ρΩ =  

1 2 3 4 5 6 
1 21.502 51.189 51.189 80.822 100.567 100.574 

21.500a 51.187 51.187 80.816 100.58 100.58 
21.496b 51.184 51.187 80.818 100.58 100.58 

10 28.496 60.211 60.211 90.811 111.181 111.402  
28.501a 60.215 60.215 90.808 111.19 111.41 
28.489b 60.196 60.196 90.79 111.16 111.39 

100 34.649 70.751 70.751 104.42 126.98 127.565 
34.671a 70.78 70.78 104.45 127.02 127.61 
34.668b 70.771 70.78 104.44 127.01 127.59 

1000 35.817 73.065 73.065 107.748 131.007 131.625 
35.842a 73.103 73.103 107.79 131.06 131.68 
35.842b 73.100  73.100  107.78 131.06 131.68 

aResults from Ref. [8], 
bResults form FEM with 300×300 elements [8]. 
 



Figure 4 presents the first seven natural frequencies of the strain gradient nanoplate 5nm×5nm 
g=0.0355nm with 51×51 nodes. The unit of the translational spring k and the rotational spring 
K are 2N m , N , respectively. The first seven order frequency has the same trend. Figure 4. 
shows that frequency will increase if K increases. There exist significant growth during 

10log [ 11, 8]K ∈ − − ) . 
Figure 5 shows the natural frequency of the 5nm×5nm nanoplate with g=0.0355nm using 
51×51 nodes. Both Figure 5. (a) and Figure 5. (b) show us that the the natural frequency of the 
strain gradient plateis very close to that of the classic Kirchhoff plate. And the frequency will 
increase with the increasing of translational spring stiffness k and rotational spring stiffness K. 
There exists significant growth interval ( 10log [6,10]k∈ ) of k. And there exist significant 
growth during 10log [ 11, 8]K ∈ − − .) also. 
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Figure 5. Natural frequency of the 5nm×5nm nanoplate with g=0.0355nm with 51×51 
nodes. (a) Frequency for nanoplate of two opposite edges simply supported and the 
others are supported by translational spring. (b) Frequency for nanoplate of two 
opposite edges simply supported and the others are supported by rotational spring. 

5. Conclusions 

A the MLS method with high-order shifted and scaled polynomial basis is proposed to study 
the vibration of strain gradient plate. Several numerical examples are presented to demonstrate 
the accuracy of MLS method with high-order shifted and scaled polynomial basis. The 
vibration of strain gradient plate with elastic boundary condition is studied. Numerical results 
of the meshfree method are in good agreement with analytic solutions and the results in the 
related literature. This method may also be extended to other more complex boundary 
condition such as non-uniform elastic restraints.   
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