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Abstract

SymF-barES-FEM-T4 is proposed in order to ensure the stability of F-barES-FEM-T4 in dynamic analysis. This for-

mulation aims to symmetrize stiffness matrix of F-barES-FEM-T4 so as to remove unstable deformation modes. The

modification for stabilization is restricted to the internal force vector and does not cause increase of degrees of freedom

(DOF). An example of analysis reveals that SymF-barES-FEM-T4 can show the comparable deformed shapes and accept-

able pressure distributions without energy divergence, which cannot be realized by F-barES-FEM-T4. It also reveals that

increase of the number of cyclic smoothings for SymF-barES-FEM-T4 does not always improve the pressure distributions

no longer unlike F-barES-FEM-T4.

Introduction

The tetrahedral elements are the current only choice in finite element (FE) analysis for complex structures due to their ease

of mesh generation. However, conventional tetrahedral FE formulations easily cause locking and pressure oscillation in

nearly incompressible cases. The high-order formulations can resolve only shear locking but still suffer from volumetric

locking and pressure oscillation. The u/p hybrid formulations[1], which is widely used to overcome incompressibility,

are applicable only in implicit cases but inapplicable in explicit dynamics. Thus, FE formulations for dynamic explicit

analysis of nearly incompressible materials with 4-node tetrahedral (T4) elements are still in research stage.

Recently, some T4 elements featured with the idea of smoothed finite element methods (S-FEMs)[2] have been proposed

in order to realize explicit dynamics of nearly incompressible materials. Selective ES/NS-FEM-T4[3, 4, 5, 6, 7] decom-

poses Cauchy stress tensor into hydrostatic part and deviatoric part, which are derived from NS-FEM-T4 and ES-FEM-T4

respectively. Although it can analyze deformation without locking, it cannot completely overcome pressure oscillation.

F-barES-FEM-T4[8, 9] decomposes deformation gradient into isovolumetric part and volumetric part in the same manner

as F-bar method[10]. Isovolumetric part is derived in the same as ES-FEM-T4 and volumetric part is derived by smoothing

between nodes and elements in a few times. This formulation can completely overcome locking and pressure oscillation

in static analysis and be expected to show the same ability in explicit dynamics.

Our group extended F-barES-FEM-T4 to explicit dynamics in previous work[11]. The results can show comparable pres-

sure distribution and deformed shapes without locking. However, they also revealed unstability of F-barES-FEM-T4 in

dynamic problems due to their imaginary parts of eigenfrequencies raised by the asymmetric stiffness matrix; therefore,

high-accurate results are restricted to short-term analysis.

This paper proposes a stabilized F-barES-FEM-T4, named SymF-barES-FEM-T4. The idea for stabilization is to sym-

metrize stiffness matrix of F-barES-FEM-T4 by replacing the formula to derive the internal force. In the following sec-

tions, the outline and an example of analysis for SymF-barES-FEM-T4 are explained. An example for explicit dynamics

of nearly incompressible materials illustrates the stability and accuracy of SymF-barES-FEM-T4.

Methods

This section explains the outline of F-barES-FEM-T4 and that of proposed method named SymF-barES-FEM-T4.



Outline of F-barES-FEM-T4

F-barES-FEM-T4 is designed in order to realize highly accurate analysis for nearly incompressible materials. This for-

mulation uses the ideas of F-bar method[10] and S-FEMs[2]. At first, deformation gradients at h-th edge
Edge

h
F are decom-

posed into isovolumetric part
Edge

h
Fiso and volumetric part

Edge

h
Fvol in the same manner as F-bar method:

Edge

h
F =

Edge

h
Fiso
·

Edge

h
Fvol. (1)

Edge

h
Fiso is calculated in the same manner as ES-FEM-T4, namely,

Edge

h
Fiso =

Edge

h
F̃iso =

1
Edge

h
J̃1/3

Edge

h
F̃, (2)

where �̃ denotes the smoothed value at an edge and
Edge

h
J̃ is relative volume change at h-th edge calculated as det(

Edge

h
F̃).

Meanwhile, volumetric part
Edge

h
Fvol is derived from the weighted mean of neighboring elements’ relative volume change

ElemJ. Weight values are defined by cyclic smoothing among nodes and elements. More concrete procedure is described

in [8, 9, 11]. The smoothed Cauchy stress tensor at h-th edge
Edge

h
T is derived from

Edge

h
F and material constitutive model.

The nodal force vector at h-th edge
Edge

h
f int is calculated as following:

Edge

h
f int
P:p =

∂
Edge

h
D̃i j

∂u̇P:p

Edge

h
Ti j

Edge

h
V, (3)

where �P:p indicates p-th direction of P-th nodal value, u is nodal displacement, �̇ indicates time derivative value,
Edge

h
D̃

is stretching tensor derived from
Edge

h
F̃ and

Edge

h
V is assigned volume to h-th edge.

Outline of SymF-barES-FEM-T4

According to [11], F-barES-FEM-T4 holds unstability in dynamic analysis due to the imaginary parts of eigenfrequencies.

Such imaginary parts are caused by asymmetry of the stiffness matrix in small deformation analysis. To ensure the stability

in dynamic analysis, we modify
Edge

h
f int in the following manner[12]:

Edge

h
f int
P:p =

∂
Edge

h
Di j

∂u̇P:p

Edge

h
Ti j

Edge

h
V, (4)

where stretching tensor
Edge

h
D, derived from

Edge

h
F, is used instead of

Edge

h
D̃. This formulation, named SymF-barES-FEM-

T4, ensures the symmetry of stiffness matrix in small deformation case; therefore, it can be expected that unstable defor-

mation modes of F-barES-FEM-T4 are removed. Details of derivation for each term are summarized in [9].

Since this modification is restricted to the stretching tensor, SymF-barES-FEM-T4 can be formulated without increasing

DOF and restrictions on material constitutive models as well as F-barES-FEM-T4. However, the calculation cost for

internal force vector is more expensive than F-barES-FEM-T4.

Results

Figure 1 illustrates the outline of dynamic bending analysis for cantilever. The shape of cantilever is defined as 10× 1× 1

m cuboid; its left side is perfectly constrained; a uniform initial velocity of 2.0 m/s in −z direction is applied. The material

constitutive model is Neo-Hookean hyperelastic model. The density, initial Young’s modulus and initial Poisson’s ratio

are 920 kg/m3, 6.0 MPa and 0.49, respectively. The analyses with ABAQUS/Explicit C3D4, Selective ES/NS-FEM-T4,

SymF-barES-FEM-T4 and F-barES-FEM-T4 are performed with unstructured tetrahedral elements of 0.2 m global mesh

seed size. The analysis with ABAQUS/Explicit C3D8 of 0.2 m global mesh seed size is also performed to obtain a

reference solution. The number of cyclic smoothings c is 1 to 3, in the analyses with SymF-barES-FEM-T4 and F-barES-

FEM-T4. All results of SymF-barES-FEM-T4 and F-barES-FEM-T4 are labeled with (c) such as ”F-barES-FEM-T4(c)”

In these analyses, the time integration scheme is Velocity Verlet, and the time increment is 1.0 × 10−4 s.

The comparison of the vertical displacements (uz) at one of the corner node (© in Figure 1) is shown in Figure 2. Time

histories of SymF-barES-FEM-T4s and F-barES-FEM-T4s agree with the reference in almost the same level; therefore, it
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Figure 1. Outline of the dynamic bending analysis of a cantilever. The initial uniform velocity is

−2.0 m/s in z direction.
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Figure 2. Comparison of the vertical displacement at the corner vs. time in the cantilever bend-

ing analysis.

can be concluded that symmetrization of SymF-barES-FEM-T4 doesn’t spoil the locking-free property of F-barES-FEM-

T4. Meanwhile, the result of ABAQUS/Explicit C3D4 shows far different time history due to the locking.

Figure 3 and 4 show the pressure distributions at 0.75 s and 4.50 s respectively. In these figures, the value above the range

is colored in dark red, the one below the range is colored in dark blue and the contour ranges are [49.0, -76.8] (kPa)

for 0.75 s and [0.10, -0.10] (MPa) for 4.50 s. The results of F-barES-FEM-T4 show comparable pressure distributions to

the one of ABAQUS/Explicit C3D8 and increase of c improve the pressure oscillation. However, in Figure 4, F-barES-

FEM-T4(1) shows the worst pressure distribution due to the energy divergence. F-barES-FEM-T4 cannot be applied to

long-term analyses since they causes energy divergence in relative earlier stage than other formulation in this way.

SymF-barES-FEM-T4 can suppress pressure oscillation in the same level as not F-barES-FEM-T4 but slightly better

than Selective ES/NS-FEM-T4 and increase of c does not improve pressure distribution no longer unlike F-barES-FEM-

T4. Meanwhile, their accuracies are not spoiled even in Figure 4 since SymF-barES-FEM-T4 does not cause energy

divergence.

Figure 5 illustrates the time histories of total energies for each formulation. SymF-barES-FEM-T4 does not cause energy

divergence although F-barES-FEM-T4(1) and (2) cause energy divergence within this analysis time. This fact indicates

symmetrization can suppress unstable deformation modes of F-barES-FEM-T4.
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Figure 3. Deformed shapes and pressure distributions of the dynamic cantilever bending analy-

sis at 0.75 s.
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Figure 4. Deformed shapes and pressure distributions of the dynamic cantilever bending analy-

sis at 4.50 s.
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Figure 5. Time histories of the total energies for each formulation.

Conclusion

We propose stabilized F-barES-FEM-T4, named SymF-barES-FEM-T4, to realize long-term analysis for nearly incom-

pressible materials. The advantages of SymF-barES-FEM-T4 are summarized in the followings:

✓ This formulation has following advantages which F-barES-FEM-T4 also has:

✓ no increasing of DOF

✓ no restrictions for material constitutive model

✓ Applicable for long-term analysis, which cannot be realized by F-barES-FEM-T4

The disadvantages of SymF-barES-FEM-T4 are summarized in the followings:

✗ Increasing of the number of cyclic smoothings does not improve pressure distributions unlike F-barES-FEM-T4

✗ suppression for pressure oscillation is worse than F-barES-FEM-T4

References
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