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Abstract 

The immersed boundary-lattice Boltzmann method (IB-LBM) has been verified to be an 

effective tool for fluid-structure interaction (FSI) simulation associated with thin and flexible 

body, and the newly developed smoothed point interpolation method (S-PIM) can handle the 

largely deformable solids owing to its soften model stiffness of model and insensitivity to 

mesh distortion. In this work, a novel method has been proposed in the present work by 

coupling IB-LBM with S-PIM for FSI problems with large-displacement solids. The proposed 

method preserves the efficiency of LBM for fluid solver, utilizes S-PIM to establish the 

realistic constitutive laws for nonlinear solids, and avoids the mesh regeneration based on the 

frame of immersed boundary method (IBM). Three benchmarking examples have been 

carried out to validate the accuracy, convergence and stability of the proposed method in 

consideration of comparative results with referenced solutions.  

Keywords: immersed boundary-lattice Boltzmann method; smoothed point interpolation 

method; fluid-structure interaction (FSI); constitutive laws                                                     

Introduction 

Fluid-structure interaction problems (FSI) are common in many fields in light of two-phase 

interaction when the movement or distortion of the body arises due to the external force 

exerted by the neighboring fluid and the corresponding response also has an impact on the 

fluid domain. The complicated mechanism requires an efficient and reliable tool especially for 

largely deformable nonlinear solids/structures. The immersed boundary method (IBM) has 

been successfully applied in the simulation of interaction between the fluid and the moving 

interface, and the mesh regeneration can be avoided using non-boundary-fitted grid [1]. It 

assumes the fluid around the interface is affected by a kind of body force which allows the 

solver of Navier-Stokes equations based on the fixed Euler grid, and the configuration 

together with shape of the boundary would not be taken into consideration. Hence, the solver 

process for FSI problems has been simplified in comparison with the boundary-fitted grid 



 

 

method. 

 

Generally, one can use the finite element method (FEM) or finite volume method (FVM) to 

handle the Navier-Stokes equations in FSI simulation. However, the solver for the nonlinear 

convection term may bring about the nonphysical numerical oscillation and the special format 

of FEM or FVM need be constructed such as pressure-stabilized Petrov-Galerkin (PSPG) 

formulation [2] and characteristic-based split (CBS) algorithm [3] which may consume 

additional calculation resource. And the pressure Poisson equation should be considered for 

the incompressible viscid flow based on these traditional methods which also affect the 

calculation efficiency. Then the lattice Boltzmann method (LBM) was introduced and has 

been widely used in the CFD field during the past two decades. Based on the explicit 

algorithm, LBM can avoid the shortcoming of FEM and FVM and guarantee the accuracy and 

efficiency with the simple form as well as easy operation. And the immersed boundary-lattice 

Boltzmann method (IB-LBM) was proposed for FSI simulation in consideration of the same 

discretization using Cartesian mesh in IBM and LBM [4]. The further development and 

improvement have been achieved for various FSI problems [5-7]. 

 

FEM is a popular solver for the transient analysis of nonlinear solids and structures. And the 

simple triangular element with three nodes (T3) for 2D or tetrahedron element with four 

nodes (T4) for 3D are very suitable for the preprocessing especially encountered with 

complex domain. However, some disadvantages have limited the extensive application like 

the overly-stiff performance and the poor accuracy. Then a class of gradient/stain smoothing 

methods have been proposed to improve the performance of T3/T4 cells including smoothed 

finite element methods (S-FEM) [8, 9] and smoothed point interpolation methods (S-PIM) [10, 

11]. Compared to S-FEM, S-PIM allows the discontinuous displacement function in the 

smoothed domain by constructing a weakened-weak form in G space. Based on different 

smoothed domains, ES-PIM and NS-PIM can be constructed and used for linear and nonlinear 

analysis. 

 

IB-LBM has been verified as an efficient tool for FSI simulation and S-PIM also can handle 

the complex nonlinear constitutive equation well. Coupling IB-LBM with S-PIM, this article 

puts forward a novel method for FSI problems involved with the large deformable nonlinear 

solids and structures. And Figure 1 has shown the general procedure. The fluid and solid can 

be separated from the FSI system, and solved based on fixed Euler grids by LBM and moving 

lagrange grids by S-PIM. The coupling force has been calculated by the frame of IBM and the 

information exchange can be implemented by the interpolation of the delta function.  



 

 

 
Figure 1 The general procedure of coupling S-PIM with IB-LBM 

Immersed boundary-lattice Boltzmann method (IB-LBM) 

For the incompressible fluid flows, the evolution equation of LBE [12] can be written as: 
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where x  is the lattice coordinate, c  are the velocities of particles, f  is the distribution 

function of particles, eqf  is the corresponding equilibrium distribution,  is the relaxation 

time, and F  is the discrete force distribution function. 

 

The particle velocity c  is defined as follows using D2Q9 model [13]: 
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where the velocity /c x t  . 

 

The equilibrium distribution function eqf  can be written in the following form: 
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where the sound velocity / 3sc c , and the factor w  is selected as 0 0w  , 1 4 1/ 9w   and

5 8 1/ 36w   . 

 

The discrete force distribution function F  can be expressed as follows: 
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where f  is the external force. 

 

By means of the mesoscopic model, the macroscopic variables like density and velocity can 

be obtained as: 
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The kinematic viscosity   is determined by: 

 2 1
( )

2
sc t     (7) 

There are several measures to evaluate the boundary force, and the present work adopts the 

direct forcing technique which was illustrated in Kang’s paper [14]. The boundary force 

density at the mth Lagrangian point mX  can be obtained as follows: 

 *( , )=2 ( ( , ) ( , t))d

m m mt t t F X U X U X  (8) 

where d
U  is the solid boundary velocity, and *

U  is the evolution velocity of fluid in 

Lagrangian mesh without force modification which can be interpolated from the neighboring 

Eulerian points: 
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where ijx  is the Euler node coordinate, h  is a continuous kernel distribution to 

approximate the delta function, and h  is the mesh size. *
u  is the evolution velocity in 

Eulerian points and evaluated with the following formula: 
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Once the boundary force density of the Lagrangian points is given, it can be distributed into 

the Eulerian points around it: 
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where N  is the total number of boundary nodes and s  is the distance of adjacent 

Lagrangian points. And the boundary force density ( , )m tF X  can be used to calculate the FSI 

force exerted on the solid by the boundary integrals. 

Smoothed point interpolation method (S-PIM) 
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triangular background cells are used to discretize the solid 

domain 0 s . The displacement s

iu ,velocity s

iv
 
and acceleration s

ia
 
can be interpolated by 

the proper shape function 0 s

I ： 
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where 0 s

I  is the FEM shape function calculated at the initial configuration. 

 
The gradient/strain smoothing technique is introduced in S-PIM based on the smoothed 

domain to soften the model stiffness, which is the main difference from the FEM. Suppose the 

domain 0 s  is divided into s

sdN  smoothing domain 0 sd

isd  with boundaries 0 sd

isd (isd 

=1,2,…, s

sdN ). Each smoothing domain 0 sd

isd
 
is non-overlapped and covers the total 

calculation together. The smoothed displacement gradient in 0 sd

isd
 
can be achieved using the 

displacement gradient ,

s

i ju
 
in the following form [15]:   
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where， , ( )s

i j Lu x  is the smoothed displacement gradient， sd

isdA  is the area of the smoothing 

domain， sd

jn  is the outward surface normal of the smoothing domain boundary 
0 sd

isd
  ，I  is 

the number of nodes in smoothing domain，n  is the number of gauss points, and 
nW  is the 

weight coefficient. 

 

In the nonlinear analysis of solids, the deformation gradient, ,ij i j ijF u   , is the primary 

strain measure. The smoothing operation on the deformation gradient ijF  yields the following 

smoothed deformation gradient 
s

ijF ： 
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Then other smoothed variables can be obtained such as the smoothed Green strain and the 

smoothed second Piola-Kirchhoff (PK2) stress
 
using the smoothed deformation gradient. 

 

The transient solutions of the nonlinear solids are achieved using the well-developed explicit 

time integration based on the central difference algorithm. The discretized equation of motion is 

given in the following form:   
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where s

IJM  is the lumped mass matrix, ,s int

Iif  is the internal force vector defined in the total 

Lagrangian formulation, and ,s ext

Iif  is the external force vector in the standard FEM form: 
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 Considering the solid immersed in the fluid domain, we can get： 
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where ,s FSI

if  denotes the FSI force. 

 

Numerical examples 

Lid-driven cavity flow with a soft wall 

In this example, a lid-driven cavity flow with a hyperelastic wall is analyzed which can be 

considered a benchmark FSI problem and has been verified by some previous algorithms 

including ALE [16], IFEM [17] and IS-FEM [15]. As is illustrated in Figure 2(a), the size of 

the square cavity is L=2 cm and the soft wall is located at the bottom with the length L=2 cm 

and the height H=0.5 cm. The fluid properties are given as the density 31.0 g/cmf   and 

the viscosity 0.2 g/(cm s)f   . A simplified Mooney-Rivlin material is used to model the 

hyperelastic wall with the material constants 2

10 0.1 g/(cm s )C   , 
01 0C   and 0   and 

the density is set as 31.0 g/cms  . The top lid is driven by the following velocity 

distribution: 
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The other boundaries of the fluid domain satisfy the non-slip boundary condition, and the 

pressure at the midpoint of the bottom edge is set as zero to be a reference value. The top edge 

of the solid is free while the others are fixed. The fluid domain is divided into 200×200 

uniform grids and the solid wall is discretized by irregular triangle elements with 976 nodes. 

Figure 2(b) shows the result of fluid velocity contour and the configuration of elastic wall, 

which is consistent with the previous study. 



 

 

 

Figure 2 A elastic wall in a lid-driven cavity flow (a) initial setting (b) Simulation result 

and the red circle denotes the result obtained by Ref [16] 

Then the analysis of convergence and stability would be carried out for the present method by 

a group of meshes setting. For the test of the fluid, the grid sizes of fluid domain are set as 

h
f
=0.1, 0.08, 0.05, 0.04, and 0.02, which are corresponding to the same solid element size of 

h
s
=0.02. The reference solution is obtained using h

f 
=0.01 and h

s
=0.02. And for the test of 

solid, the grid sizes of solid domain are set as h
s
=0.04, 0.036, 0.032, 0.028, and 0.024, which 

are corresponding to the same fluid element size of h
f
=0.04. The reference solution is 

obtained using h
f 
=0.04 and h

s
=0.02. We calculate the L

2
 norms of errors in the fluid velocity 

and solid displacement via the following formulas: 

,   (20) 

where ,f num

iv  and ,s num

iu  are the numerical solutions, and ,f ref

iv  and ,s ref

iu  are the reference 

solutions respectively. And the result can be seen in Figure 3 and 4 which verifies the good 

convergence and stability of the proposed method. 
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(a)                                  (b) 

Figure 3 The convergence analysis for the fluid domain (a) the fluid velocity (b) the solid 

displacement  
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(a)                                 (b) 

Figure 4 The convergence analysis for the solid (a) the fluid velocity (b) the solid 

displacement  

A elastic beam in a fluid tunnel 

Here, a steady problem is considered about a flexible beam fixed in the fluid tunnel which was 

simulated previously using IS-FEM [15]. The viscous fluid flows across the beam and leads to 

a large deformation because of the fluid force. The beam will come to a stead status after 

some time when the elastic force balances with the fluid force. As illustrated in Figure 5, The 

length and height of the fluid field is 4 cmL   and 1 cmH  . The distance between the fixed 

beam and the left edge of the fluid tunnel is / 4L . The thickness of the beam is 0.04 cma   
and the height is 0.8 cmb  . Gravity is neglected for this problem. The bottom of the fluid 

domain satisfies the nonslip boundary condition. And the top satisfies a symmetric condition 

using
2 0fv  . 

 

Figure 5 Calculation model of beam in a fluid tunnel 

We use 800×200 uniform grids for fluid domain and irregular triangle elements with 409 

nodes for the flexible beam. And Figure 6 have shown the result of velocity contour at the 

time t = 1s, 3s, 6s. A high velocity field arises on the upper of the beam because of the 

oscillation of the tip end and a low velocity field has been also formed behind the beam due to 

the barrier effect. And the fluid flow enforces the beam to bend along the fluid tunnel. The 

fluid force balances the elastic force gradually which brings out a stable state for the FSI 

system. 

 

L 

 
H 

 

 A 

 

L/4 

 

a 

 

b  

 



 

 

 

Figure 6 Velocity contour and configuration of beam at different time 

(a) t=1s (b) t=3s (c) t= 6s 

The horizontal displacement of the tip in the beam has also been investigated in comparison 

with the result of reference solution, which can be found in Figure 7(a). The displacement 

amplitude in the balance state keeps consistent with the reported solution. Furthermore, we set 

a group of meshes to calculate the displacement errors to verify the advantages of S-PIM with 

FEM. The mesh sizes of solid domain are set as hs=1/50, 1/75, 1/100, and 1/125 with the same 

fluid grid of hf=1/100, and the reference solution is set hs=1/200 and hf=1/100 using FEM for 

solid solver. Figure 7(b) has shown the comparison result which validates the advantage of 

S-PIM for the solution of elastic problem. 
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(a)                                    (b) 

Figure 7 (a) The curve of horizontal displacement in comparison with IS-FEM [15] 

(b) The comparison of displacement errors in S-PIM and FEM 

Then the stress analysis of beam using S-PIM has been given in the Figure 8. And from the 

(a) t = 1s 

(b) t = 3s 

(c) t = 6s 



 

 

figure, the beam encounters a primary tension-compression stress in y direction at the fixed 

bottom end and the fluid force leads to an obvious shear force around the middle of the beam.  

 

Figure 8 The stress contour at the steady state 

 

Flow passing a cylinder with a flexible flag 

A benchmark FSI problem of a cylinder with a flexible flag in the downstream side is 

analyzed to verify the reliability of IB-LBM with S-PIM. Here we consider the non-steady 

FSI case discussed by Turek and Hron [18]. As illustrated in Figure 9, the fluid domain is set 

as 2.5 mL  and 0.41 mH  , with a fixed circle of diameter 0.1 md  and centered at 

(0.2,0.2) mC  . The elastic bar was attached at the right edge of the circle with the length 

0.35 ml  and height 0.02 mh  . The fluid properties are given as 
3 31.0 10  kg/mf   , 

1 kg/(m s)f    which means flow with a Reynolds number of Re=100. The solid materials 

are modeled by Saint Venant-Kirchhoff with the density
3 310 10  kg/ms   , Poisson’s ratio 

0.4s   and Young’s modulus 
6 20.5 10  kg/(m s )sE    .The boundary conditions are such 

that there is no slip over the top and bottom of the fluid channel together with the surface of 

the solid. At the outlet the pressure is set to be zero, and the input velocity ( )xv t  has the 

following distribution: 
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where 
21.5 ( ) / ( / 2)v Uy H y H  . 



 

 

 

Figure 9 Problem setting of fluid flow past a cylinder with a flag 

The fluid domain is discretized by 1000×164 uniform grids. And Figure 10 shows the 

velocity contour at the time t=10 s and t=13 s. The fluid force enforces the flexible to swing 

and the vortex sheds along with flag as time varies. 

 
(a)                                   (b) 

Figure 10 Fluid velocity contours (a) t=10s (b) t=13s  

Figure 11 shows the displacement curve of the tail end in comparison with the reference result 

by vertical displacement uy and horizontal displacement ux, respectively. And from it, we can 

see a periodical vibration can be obtained after some time. 
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(b) 

Figure 11 The history of displacement at point A (a) vertical displacement uy         

(b) horizontal displacement ux 

Conclusion  

In this paper, we coupled IB-IBM with S-PIM to solve fluid-structure interaction problems 

with large deformable solids. Following conclusions can be obtained from the numerical 

examples: 

1) The proposed method employs the framework of immersed boundary method which 

makes the method possess the advantages of avoiding re-meshing operation for moving 

interface. 

2) The simple and efficient lattice Boltzmann method is used for incompressible viscid fluid 

flow with explicit evolution algorithm and avoids the solution of pressure Poisson 

equation. 

3) The smoothed point interpolation method (S-PIM) is employed as solid solver which can 

soften the model stiffness and establish real constitutive equation for nonlinear analysis.  

4) The better result can be obtained by S-PIM coupling with IB-LBM in comparison with 

coupled FEM for solid analysis. 
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