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Abstract 

This paper focuses on comparing the present advection schemes to capture the 

interface without reconstruction. The VOF (volume of fluid) equation is solved based 

on gradient smoothing method. With the help of blending function, the interface 

capturing schemes are devised as a blend of high-resolution and compression schemes. 

There are three well-known schemes to be selected, including CICSAM (Compressive 

Interface Capturing Scheme for Arbitrary meshes CICSAM), FBICS (Flux-Blending 

Interface-Capturing Scheme) and CUIBS (Cubic Upwind Interpolation based 

Blending Scheme).Using gradient smoothing operation, the variables of upwind 

points can be calculated by interpolation on gradient smoothing domains. Two 

benchmark tests are adopted. Numerical results show that CICSAM scheme produces 

more numerical error with the increase of Courant number because of numerical 

diffusion, while FBICS and CUIBS schemes can obtain satisfactory predictions at 

different Courant numbers. 

 

Keywords: gradient smoothing method (GSM), normalized variable diagram (NVD), 

unstructured meshes, volume of Fluid (VOF) method. 

1 Introduction  

In past two decades, computational fluid dynamics (CFD) plays an important role in 

the safety evaluation of ship and ocean structured (e.g., sloshing, ship slamming, 



green water impact, etc). With the growing need in ship building industry, CFD as an 

engineering tool is facing new requirements. Multiple flows is a major challenge in 

solving naval hydrodynamics problems using CFD, especially the development of 

more accurate mathematical model using unstructured meshes. Thus, several 

interesting methods were introduced and developed to solve multiple flows problems, 

such as level set method [1], particles on interface [2] or smoothed particle 

hydrodynamics [3].  

 

One convenient and powerful method based on Eulerian mesh is the Volume of Fluid 

(VOF) method, which was first developed by Nichols and Hirt [4]. In the VOF 

method, a volume fraction function is introduced, which represents the fraction of a 

local cell volume occupied by one of the fluids. And the volume fraction function is 

governed by a scalar convection equation through flow domain. For maintain the 

sharpness of the captured interface, one class of schemes is introduced with using 

interface reconstruction and high-resolution differencing schemes. Noh and Woodard 

[5] approximated the interface of each cell by vertical or horizontal lines, which is 

named simple line interface calculation (SLIC). For improving accuracy, the 

piecewise linear interface calculation (PLIC) was proposed by Youngs [6] using an 

oblique lines to reconstruct the interface. However, it is not difficult to see that the 

application is very complicated on unstructured meshes. To avoid reconstructing the 

interface, another class of approaches is to combine high-resolution schemes with 

compressive schemes. Over the past decades, many such improved schemes have 

been developed, among them: HRIC [7], CICSAM [8], STACS [9], FBICS [10] and 

CUIBS [11] schemes. 

 

More recently, gradient smoothing methods (GSM) has been developed to solve 

compressible flows problems using unstructured meshes [12]. And GSM also was 

applied to solve the steady state and transient incompressible flow problems using the 

artificial compressibility method [13]. The method is effective for various types of 

fluid dynamics problems by combining with the major features of FVM and some 

meshfree techniques [14]. Because of different alternative smoothing functions and 

quadrature schemes for gradient approximation [15], the method has advantages on 

versatility and flexibility. Thus, the upwind variables can interpolated with the help of 

gradient smoothing operation, because the upwind points are need for constructing 

high-resolution schemes. For solving free surface problems using GSM, VOF is 

introduced in this paper. Thus, different advection schemes is performed and 

discussed. 

 

Accordingly, several high-resolution, compressive advection schemes are compared in 

the context of GSM on unstructured meshes. In this article, a brief principle of the 

GSM is presented. Then the general methodology in interface-capturing schemes is 

clarified and concisely described, especially, three classical advection schemes are 

used. Finally, the results related to two advection cases obtained using several 

schemes at different Courant number values are presented and discussed. 



2 Gradient smoothing method 

Liu and Zhang developed generalized gradient smoothing technique [16]. Based G 

space and weakened weak formulation, smoothed point interpolation is presented and 

used for solving solid mechanics problems. Further, Liu and Xu introduced the 

method to solve strong–form governing equations for fluid dynamic problems [12]. 

Variable information is stored on the nodes and their derivatives at various locations 

are approximated with gradient smoothing operation over relevant gradient smoothing 

domains. 

2.1 Gradient smoothing operation 

The gradients of a field variable U at an arbitrary point at xi in domain Ω� can be 

approximated in the form of 

∇�� ≡ ∇�(��) ≈ ∫ ∇�(�)
��

��(� − ��)��                (1) 

 

By integrating Eq. (1) by part and using divergence theorem, it becomes 

∇�(��) ≈ ∫ �(�)
��

��(� − ��)�d�� − ∫ �(�)
��

��(� − ��)dΩ�     (2) 

where � is the gradient operator; ��  is the smoothing function; ��  denotes the 

boundary of the gradient smoothing domain Ω� ; and n represents the 

outward-pointing unit normal vector on ��, as shown in Fig. 1. 

 

Figure 1. Smoothing domain on point xi 

Based on some essential conditions, e.g. the unity and compact conditions [17], the 

smoothing function is chosen properly to satisfy requirement of numerical solution. 

Accordingly, the smoothing functions in our study can be designed to be piecewise 

constant as follow 

��(� − ��) = �
1 ��, � ∈ Ω�⁄
0							, � ∉ Ω�

                       (3) 

where �� stands for the area of the gradient smoothing domain Ω�; Thus, the second 

term on right-hand-side in Eq. (2) will vanishes, which reduces to 

∇�(��) ≈
�

��
∫ �(�)
���

�d�                      (4) 



2.2 Construction of smoothing domains  

The smoothing domains are constructed based on a set of primitive cells which are 

connected by nodes in computational domain. And the values of field functions are 

stored at those nodes. There are three types of gradient smoothing domains in GSM, 

respectively, the node-based gradient smoothing domain (nGSD), midpoint-based 

gradient smoothing domain (mGSD) and centroid-based gradient smoothing domain 

(cGSD). The nGSD is formed by connecting the centroids of relevant triangles with 

midpoints of influenced cell-edges, as shown in Fig. 2 (a). The mGSD is the 

connection of two end-nodes of the edge with the centroids on the both sides of the 

cell-edge, as shown in Fig. 2 (b). And the cGSD is formed by a primitive cell, as 

shown in Fig. 2 (c). 

           

(a) nGSD             (b) mGSD            (c) cGSD 

Figure 2. Illustration of gradient smoothing domains 

2.3 Approximations of spatial derivatives 

2.3.1 First-order derivatives at nodes 

One-point quadrature scheme (chosen as the midpoint) for each edge is used, and it is 

assumed that 

��� = ����� = ���                          (5) 

 

Using gradient smoothing operation of Equation (4), first-order derivatives at nodes 

can be approximated as  

�

���

��
≈

�

��
���� ∑ (∆��)������

��
���

���

��
≈

�

��
���� ∑ (∆��)������

��
���

                  (6) 

where  

(∆��)��� = (∆��)���
(�)
+ (∆��)���

(�)
,																	(∆��)��� = (∆��)���

(�)
+ (∆��)���

(�)
   (7) 

 

In above equations, ��
����  is the area of nGSD; ��  denotes the number of 



supporting nodes around node � ; (∆��)���  and (∆��)���  represent the sum of 

normal vectors of domain edges � ���  and superscripts (L) and (R) are pointers to 

the two domain-edge associated with cell edge ���; � ����� associated with cell 

edge ��� over nGSD shown in Fig. 2 (a), 

�
(∆��)���

(�)
= �� ���(��)� ��� ,																											(∆��)���

(�)
= �� ���(��)� ���

(∆��)���
(�)

= �� �����(��)� �����,													(∆��)���
(�)

= �� �����(��)� �����

   (8) 

where � is the length of domain face and �� and ��  represent the two components 

of a domain edge vectors.  

 

The values of field variables U at midpoint are evaluated by simple liner 

interpolation: 

��� ≈
������

�
                            (9) 

2.3.2 First-order derivatives at midpoints 

The gradient at midpoint can be approximated with Eq. (4) over mGSM shown in Fig. 

2 (b). They are approximated as follows: 

����
��

≈ [
1

2
(∆��

� )���� ���� + ������+
1

2
(∆��

� )������������ + ���� 

+
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where ��
����  is the area of mGSD; ∆��

�  and ∆��
�

 represent the components of a 

respective face vector of mGSD; The face vectors is computed in the similar way as 

the face vectors for nGSD. And the values of field variables U at centroid are 

calculated by simple liner interpolation: 

��� ≈
������������

�
                      (12) 

2.3.3 First-order derivatives at centroids 

Analogous to the discretization at nodes and midpoints described above, the gradient 

at centroids can be approximated over cGSM shown in Fig. 2 (c). 

����
��

≈ [
1

2
(∆��

�)������ + ����+
1
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where ∆��
� and ∆��

�  denote the two components of a respective face vector for  

cGSM and ��
����  is the area of the cGSM. 

 

In this paper, GSM is adopted to solve VOF equation. Because only first order 

derivative need to calculated, GSM can be treat as vertex-centered FVM. However, 

the gradient operation is applied for the reconstruction of upwind point. This will be 

introduced in Section 5. 

3. The VOF model 

The various fluids are assumed to be incompressible and solutions are obtained by 

solving the following the conservation of mass and momentum equations [10]: 

������⃗ ��

���
= 0                               (15) 

�����⃗ �

��
+

�

���
����⃗ ���⃗��= −

��

���
+

����

���
+ ���                (16) 

where ��⃗�is velocity vector, � is the pressure, ���is the viscous stress tensor and ��is 

gravitational acceleration.  

 

And the volume fraction� is governed by a simple advection equation: 

��

��
+

�����⃗ �� �

���
= 0                            (17) 

 

The density is calculated by � = ��� + (1 − �)��  and viscosity by � = ��� +

(1 − �)��. The subscripts 1 and 2 respectively denote the two fluids. 

 

In this work, VOF equation is solved without interface reconstruction explicitly. The 

key is the spatial discretization of the advection equation on unstructured meshes. 

Thus, the convection term in Eq. (17) over a cell can be approximate as  

∫
�����⃗ �� �

���
�

�
Ω = ∫ ��⃗ ∙(��⃗��)�

�� ≈ ∑ (��⃗ �� ∙��⃗�)����        (18) 

where �denotes the boundary of the control volume Ω; �� is the area of each face 

and f is the number of faces of the control volume Ω. For the temporal discretization, 

the Crank-Nicholson scheme is employed. 

4. The present interface capturing schemes  

From previous study, it is obvious that the key of the VOF method without interface 



reconstruction focus on the interface capturing schemes used in advection equation. 

The schemes can ensure sharp resolution of the discontinuity, meanwhile avoid an 

over compressed interface. The design of interface scheme possess the two following 

basic fundamentals:(a) The interface scheme is a combination of Compressive (BD) 

and High-Resolution (HR) schemes;(b) Based on the angle between the interface 

direction and the grid orientation, a blending function should be obtained, preferably 

in a continuous fashion. Generally, the normalized value of � at the control volume 

face can be obtained by blending the two schemes involved BD scheme and HR 

scheme: 

��� = ���
�� �(�) + ���

�� [1 − �(�)]               (19) 

where �(�) is blending function which varies from 0 to 1 and � is the angle 

between the normal unit vector of the interface and the vector pointing from centre 

point C to downstream point D. And �� is the normal value which is introduced by 

Gaskell and Lau [18] and Leonard [19]: 

�� =
��� �

� � �� �
                          (20) 

where the index U, C and D denote upwind point, centre point and downwind point in 

GSM, respectively, as depicted in Fig. 3. It is clear that when fluid flows from the 

upwind cell to the interface, if the interface is parallel to the cell face, the compressive 

scheme should be employed; and if perpendicular to the cell face, only 

high-resolution is used.  

 

Figure 3. Illustration of the upwind, centre and downwind points on 

unstructured meshes 

4.1 Compressive Interface Capturing Scheme for Arbitrary meshes, CICSAM 

The CICSAM scheme was developed by Ubbink and Issa for interface capturing [20]. 

The scheme switches between the HYPER-C scheme and ULTIMATE QUICKEST 

(UQ) scheme. Both two schemes need to satisfy the Convection Boundedness 

Criterion (CBC). The HYPER-C scheme combined the CFL condition and CBC, and 

is expressed as:  

�������� �� = �
min�1,

���

��
�							0 ≤ ��� ≤ 1

���																								��ℎ������		
              (21) 

 



And the UQ scheme adopt a blend of upwind and QUICK schemes with a Courant 

number, the normal face value is defined as： 

����� = �
min�

�������(����)(������)

�
, �������� ��� 					0 ≤ ��� ≤ 1

���																																																																							��ℎ������		
    (22) 

where �� is the value of local Courant number and defined by �� =
∑ ��� 	(��∙��∆�,�)�

�
.  

 

Furthermore, using a blending function, CICSAM switches the both schemes and can 

be written as: 

��� = �������� �������+ �����[1 − �����]            (23) 

where ����� is blending function of angle �� between the gradient of the volume 

fraction at the interface and the normal to the cell face. The blending function and the 

angle are calculated by  

�����= min	[
����������

�
, 1]                    (24) 

and  

 

�� = arccos	�
∇� �∙��

�∇� ������
�                            (25) 

 

The NVD of CICSM is drawn in Fig. 4. 

 
Figure 4. NVD of the CICSAM scheme 

4.2Flux-Blending Interface-Capturing Scheme, FBICS 

Tsui and co-workers have developed two interface-capturing scheme based on flux 

blending, FBICS-A and FBICS-B [10]. And in this paper, the FBICS-A is referred to 

simply as FBICS. Compared with other present schemes, FBICS scheme was the most 

accurate in capturing interface at different Courant number. FBICS uses Fromm’s 

scheme as the basic scheme in HR and is built to satisfy CBS, is expressed: 



����� =

⎩
⎪
⎨

⎪
⎧ 3���																0 < ��� ≤

�

�

��� +
�

�
											

�

�
< ��� ≤

�

�

1																						
�

�
< ��� ≤ 1

���																				��ℎ������

                     (26) 

����� =

⎩
⎪
⎨

⎪
⎧3���																0 < ��� ≤

�

�

1																				
�

�
< ��� ≤ 1

���																			��ℎ������

                           (27) 

 

The scheme is depicted on normalized variables diagram in Fig. 5. Different from 

CICSAM, FBICS is not dependent on the Courant number. 

      

Figure 5. NVD of the FBICS scheme 

4.3Cubic Upwind Interpolation based Blending Scheme, CUIBS 

A new scheme is proposed for interface capturing, which is inspired by the study of 

Waterson and Deconinck based on the ��� − � class of schemes [21]. The CUIBS 

scheme is design to solve VOF model using unstructured meshes and shows a 

performance that is independent of Courant number [11]. In CUIBS scheme, limited 

CUI scheme is used as HR scheme and the BD scheme for the compressive is 

employed which is same as that used for FBICS. The normalized variable diagram of 

the CUIBS scheme is shown in Fig. 6. The HR and BD scheme is expressed as  

����� =

⎩
⎪
⎨

⎪
⎧3���																		0 < ��� ≤
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��
�

�
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Figure 6. NVD of the CUIBS scheme 

5. The upwind point reconstruction on unstructured meshes 

Because of the more intricate geometrical computational field, it is difficult to 

implement TVD scheme on unstructured meshes. The value of point C and D can be 

easily obtained from known variables on unstructured meshes, but the location and 

variable value of upwind point are unknown. Three interpolation scheme (node 

gradient smoothing method, nGSM、midpoint gradient smoothing method, mGSM 

and centre gradient smoothing method, cGSM) based on gradient smoothing method 

are proposed in our previous study, as shown in Fig. 7, it is demonstrated that cGSM 

lead to a better performance in terms of accuracy and monotonicity. The information 

at upwind point can be calculated with interpolation on cGSD, is expressed as  

�� = �� + ���⃗ �� ∙(∇�)�                    (30) 

where ���⃗ �� is the vector from point � to centroid� and (∇�)� is the gradient of 

centroid � . (∇�)�  is calculated based on the gradient smoothing domain of 

centroid�. 

     

(a) nGSM             (b) mGSM             (c) cGSM 

Figure 7. Upwind point reconstruction using three schemes based on GSM 

6. Numerical test 

In this section, the three interface capturing schemes including CICSAM, FBICS and 

CUIBC schemes are compared to evaluate the relative performance. Two cases are 

selected for testing: (a) advection of hollow square in an oblique flow; (b) advection 

of a circle in shear flow. The tests are performed with low and high Courant number. 

Three Courant numbers are performed and denoted by low, medium and high in 



present tests, they approximates 0.1, 0.5 and 0.7, respectively. 

 

The relative error in numerical solutions is defined as 

� =
∑ ���

����
���

���

∑ ���
���

���

                           (31) 

where N is the total number of nodes in the domain. ��
� and ��

�  respectively 

denote the numerical solution and analytical solution. 

6.1 Advection of hollow square in an oblique flow 

To confirm the performance of interface capturing schemes, a hollow square which 

the outer width is 0.8 and the inner width is 0.4 and initially centred at (0.8, 

0.8) ,transports in an oblique velocity field (� = (�, �) = (2, 1)). The domain is set to 

be 4 × 4 square. There are 11419 nodes and 22436 cells in unstructured triangular 

meshes.  

 

After 1 unit of time, the contours of the volume fraction on unstructured meshes 

including CICSAM, FBICS and CUIBS schemes are depicted in Fig. 8- Fig. 10, and 

are over the range from 0.05 to 0.95 in interval of 0.1. 

                 

(a) low ��            (b) medium��            (c) high �� 

Figure 8. Contour plots for advection of hollow square in oblique flow using 

CICSAM scheme 

                 

(a) low ��            (b) medium��            (c) high �� 

Figure 9. Contour plots for advection of hollow square in oblique flow using 

FBICS scheme 

                 

(a) low ��            (b) medium��            (c) high �� 



Figure 10. Contour plots for advection of hollow square in oblique flow using 

CUIBS scheme 

The result shows that CICSAM scheme deteriorate at high Courant number because 

of numerical diffusive, as shown in Fig. 8. And the other two schemes can capture a 

sharp interface, as depicted in Fig. 9 and Fig. 10. To verify the influence of Courant 

number, the relative error for the hollow square is calculated using Eq. (31) and 

summarized in Table 1. With the increasing of Courant number, the error of CICSAM 

increases, while FBICS and CUIBS scheme are just opposite. Thus, it is also 

demonstrated that the Courant number has effect on CICSAM scheme and the error of 

FBICS and CUIBS scheme change very little at different Courant number. This 

indicates FBICS and CUIBS perform satisfactorily, regard less of the Courant number. 

 

Table 1. Relative error of hollow square in an oblique flow with different 

Courant numbers  
Scheme Low Medium High 

CICSAM 0.13793  0.14222  0.18928  

FBICS 0.14328  0.13411  0.13049  

CUIBS 0.14249  0.13180  0.12897  

6.2Advection of a circle in a shear flow 

To further compare the ability of the three schemes for capturing interface, a circle in 

shear flow as a benchmark was tested. The problem reflects the interface twisted by a 

shear flow field, which is subjected to flow straining and deforms continuously. The 

computational field was set as a square with the size of � × �. There are a circle of 

radius 0.2�centred at�
�

�
,
(���)

�
�. The velocity field is assumed  

�
� = sin(�) cos(�)								
� = −cos	(�)sin	(�)				

                       (32) 

Simulations are performed using unstructured triangular meshes included 26142 

nodes and 51682 cells. The circle is strained for N time units in forward step, then the 

velocity is reverses and the circle returned to its original configuration by the 

backward of N time units. Similar with advection of hollow square in oblique flow, 

the contours of the volume fraction for N=8 are depicted in Fig. 11-Fig. 13with 

different Courant numbers, which are over the range from 0.05 to 0.95 in interval of 

0.1. 

     
(a) low ��             (b) medium ��           (c) high �� 

Figure 11. Contour plots for advection of a circle in a shear flow of the forward 

and backward using CICSAM scheme 



       
(a) low ��             (b) medium ��           (c) high �� 

Figure 12. Contour plots for advection of a circle in a shear flow of the forward 

and backward using FBICS scheme 

       
(a) low ��             (b) medium ��           (c) high �� 

Figure 13. Contour plots for advection of a circle in a shear flow of the forward 

and backward using CUIBS scheme 

 

By comparing the contours obtained over unstructured meshes, the results show that 
CICSAM scheme has evidently dependence on ��  and the predicted interface 

become evidently diffusive with increasing Courant number. Table 2 presents the 

relative error variation of the three schemes with Courant number. It should be noted 

that FBICS and CUIBS scheme lead to more accurate numerical predictions at medium 
and high ��, while has slight more numerical diffusion at low ��. 

 

Table 2. Relative error of a circle in a shear flow with different Courant numbers  
Scheme Low Medium High 

CICSAM 0.02613  0.04609  0.43241  

FBICS 0.03009  0.02533  0.02727  

CUIBS 0.03067  0.02549  0.02889  

6. Conclusions 

Three present interface capturing schemes are implemented and compared in this 

study. The VOF model is solved by gradient smoothing method without explicitly 

interface reconstructing. On unstructured meshes, the variables on upwind points are 

calculated by cGSM model for improving the numerical accuracy. For comparing the 

ability of the three advection schemes for interface capturing, two benchmark tests are 

used at different Courant numbers. The results indicate that accuracy of CICSAM 

scheme is depended on Courant number and has serious numerical diffusion at high 

Courant number. While FBICS and CUIBS schemes can produce accurate numerical 

predictions even at high Courant number. Thus the two schemes will be alternative in 

application to free surface problems using GSM in future. 
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