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Abstract 

In this paper, we propose a new clustering algorithm which is an improvement to a self-

constructing clustering (SCC) method. The SCC processes all the data points incrementally. If 

the input data point is similar enough to an existing cluster, the point is added to the cluster. 

Otherwise, the data point forms a new cluster of its own. The method ends up with a set of 

clusters after it runs through the whole dataset once. However, once a data point is assigned to 

a cluster, there is no way to change the assignment afterwards. This may cause assignment 

errors and the efficacy of the clustering is reduced. In this paper, we adopt an iterative 

approach to overcome this shortcoming. A data point can be re-assigned to another cluster. 

Adding points into and removing points from a cluster are allowed to be done iteratively in 

the clustering process. The clustering work stops when all the assignments are stable, i.e., no 

assignment would be changed. The proposed approach can result in better clusters, and 

experimental results show that it performs better than SCC for real world datasets.  
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I. Introduction 

In the field of artificial intelligence, clustering techniques play a very important role [3][9]. 

Clustering is an unsupervised classification technology, with a purpose of forming meaningful 

clusters for the objects under consideration. Usually, similar objects are grouped in the same 

cluster, and different objects are grouped in different clusters. The clustering concept is 

widely applied in a variety of different areas, such as bio-engineering [6][14], environmental 

monitoring [8], economic applications [12], and so on. 

 

In the electronic text applications [4], the dimensionality of the data can be reduced to 

improve the efficiency of the operation through the clustering technology. In the 

recommendation applications of e-commerce [7], clustering is used to reduce the size of the 

information matrix to enhance the efficiency of the operation. In the application of regression, 

the reduction of information dimension is used. In power system, clustering is used to predict 

the electrical trend in the future [1]. In other areas, such as stock market and data regression 

[11][13], the clustering technology is an important and indispensable core key. Therefore, 

developing a better clustering technology is a very critical issue. 

 

Ouyang et al. [5][10] proposed a clustering method, self-constructing clustering (SCC), which 

has been applied in various applications. It considers all the data points one by one. For an 

input point, its similarity to each existing cluster is calculated. If the point is similar enough to 

an existing cluster, the point is added in the cluster. On the other hand, if the point is not 

similar enough to any of the existing clusters, the point forms a new cluster. The algorithm 

proceeds until all the points have been processed once. SCC offers several advantages. First, 

since the algorithm runs through the data points once, it is fast. Second, it considers the 



variation of the data under consideration. Third, the number of clusters is not to be specified 

in advance. 

 

However, SCC has one disadvantage. Once a data point is assigned to a cluster, there is no 

way to change the assignment afterwards. This may cause assignment errors and the efficacy 

of the clustering is reduced. In this paper, we adopt an iterative approach to overcome this 

shortcoming of SCC. A data point can be re-assigned to another cluster. Adding points into 

and removing points from a cluster are allowed to be done iteratively in the clustering process. 

The clustering work stops with a desired number of clusters when all the assignments are 

stable, i.e., no assignment would be changed. The proposed approach can result in better 

clusters, and experimental results show that it performs better than SCC for real world 

datasets. 

 

The rest of this paper is organized as follows. SCC is briefly reviewed in Section II. Our 

proposed improvement presented in Section III. Experimental results are shown in Section IV. 

Section V gives a conclusion. 

II. Related Work 

SCC [5][10] is a progressive clustering method using the Gaussian function as the 

membership function of the resulting clusters. For each cluster, its center and distribution are 

described by the mean and standard deviation, respectively, of the contained data points. 

 

Data points are considered one by one sequentially. When the first data point comes in, the 

first cluster is created for it. Then, for each of the rest data points, SCC calculates the 

similarity between the input data point and each existing cluster. If the input data point is 

similar enough to an existing cluster, the data point is added into this cluster. Otherwise, a 

new cluster is created for the input data point. Given the input data point x , the similarity to 

cluster G  for x  is calculated as follows: 
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where p  is the number of dimensions of the input data, and im  and i  are the center and 

standard deviation of the i th dimension of cluster G , defined respectively by 
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Note that || G  is the total number of data points contained in cluster G , jy , ||,1,= Gj  , are 

the data points contained in cluster G , and jiy  represents the i th dimension of jy . When the 

similarity between the input data point x  and the existing clusters is greater than a default 

threshold, the input is added into the cluster with the largest similarity. Let the cluster be tG  

and its size be tS . The mean and deviation of cluster tG  are then updated. 

 

After all the data points are considered, SCC stops and a set of clusters are obtained. The 

algorithm can be described below. 

 

Table 1. SCC 

Algorithm 1 SCC 

1: Input: dataset D  

2: for each data point x  do 

3: compute similarity to each existing cluster 

4: if some similarity bigger enough then 

5: add x  to the cluster with largest similarity 

6: else 

7: form a new cluster 

8: end if 

9: end for 

10: Output: all the clusters obtained 

 

SCC offers several advantages. First, since the algorithm runs through the data points once, it 

is fast. Second, it considers the variation of the data under consideration. Third, the number of 

clusters is not to be specified in advance. 

III. Proposed Method 

However, SCC has one disadvantage. Once a data point is assigned to a cluster, there is no 

way to change the assignment afterwards. This may cause assignment errors and the efficacy 

of the clustering is reduced. We adopt an iterative approach to overcome this shortcoming of 

SCC. A data point can be re-assigned to another cluster. Adding points into and removing 

points from a cluster are allowed to be done iteratively in the clustering process. The 

clustering work stops with a desired number of clusters when all the assignments are stable, 

i.e., no assignment would be changed. 

 

For convenience, our proposed approach is called New-SCC. New-SCC consists of several 

rounds of iteration. In the first round, the algorithm of the original SCC is performed. 

Then we perform the second round and beyond, each round considering all the data points 

sequentially. In each succeeding round, for an input data point x , we first remove it from the 

cluster tG , which x  belongs to. Then we calculate the similarity between x  and each existing 

cluster by Eq. (1). If the max similarity occurs with cluster aG  and it is higher than a specified 

threshold, x  is added into aG . However, if the max similarity is not higher than the specified 

threshold, a new cluster is created for x . A round of iteration ends when all the data points 

are gone through once. If one of the assignments has been changed for the data points in the 

current round, the next round of iteration begins. Otherwise, the assignments are stable and 



New-SCC stops with a desired number of clusters. Let's have an example here to illustrate 

how New-SCC works. Suppose we have the following 12 data points: 
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After performing SCC in the first round, we have 6 clusters: 1G , 2G , 3G , 4G , 5G , and 6G , 

with 
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Note that 1G  contains data points 1 and 6, 2G  contains data points 2 and 5, 3G  contains data 

point 3, 4G  contains data point 4, 5G  contains data points 7 and 8, and 6G  contains data 

points 9, 10, 11, and 12. After the second round, we have 4 clusters: 1G , 2G , 3G , and 4G , 

with 
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Note that 1G  contains data points 1 3, 6, and 8, 2G  contains data points 2, 4, and 5, 3G  

contains data point 7, and 4G  contains data points 9, 10, 11, and 12. After the third round, we 

have 3 clusters: 1G , 2G , and 3G , with 
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Note that 1G  contains data points 1 3, 6, 7, and 8, 2G  contains data points 2, 4, and 5, and 3G  

contains data points 9, 10, 11, and 12. After the fourth round, no assignment has been 

changed. New-SCC stops with three clusters 1G , 2G , and 3G , with 
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IV. Experimental Results 

In this section, some experimental results are presented. Comparisons between SCC and New-

SCC have been done. Several real world datasets taken from the UCI Machine Learning 

Repository are used in experiments [2]. The characteristics of these datasets are listed in Table 

2. 

 

Table 2. Accuracy results with different window sizes 

Dataset # instances # features # classes 

Breast 569 30 2 

Ecoli 336 7 8 

Glass 214 9 6 

Heart 270 13 2 

Iris 150 4 3 

Libras 360 90 15 

Wine 178 13 3 

Yeast 1484 8 10 
 
In this table, column 1 indicates the name of the dataset, and the remaining columns indicate 

the number of instances, the number of features, and the number of classes, respectively, 

associated with each dataset. For example, the Breast dataset contains 569 data instances, 

each instance has 30 features (or dimensions) and belongs to one of 2 classes. Note that these 

datasets are single-labeled, i.e., an instance belongs to only one class. 

 

To evaluate the effectiveness of SCC and New-SCC, the following performance measures are 

adopted: 

1. F-score. It is defined as 
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where k is the number of classes, L is the number of clusters, n is the size of the entire data 

set, jln  is the number of data instances belonging to class j  in cluster l , ln  is the size of 

cluster l , and jn  is the size of class j . 

 



2. RI. It is defined as 
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where a is the number of pairs of data objects having different class labels and belonging to 

different clusters, b is the number of pairs of data objects having the same cluster labels and 

belonging to the same clusters, and n is the size of the entire data set. 

 

3. NMI. It is defined as  
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where k is the number of classes, L is the number of clusters, n is the size of the entire data 

set, jln  is the number of data instances belonging to class j  in cluster l , ln  is the size of 

cluster l , and jn  is the size of class j . 

 

All these measures have a common property: a higher measure indicates a better clustering 

performance. 

 

Table 3 shows performance comparisons between SCC and New-SCC. In this table, the 

values for the three measures, F-score, RI, and NMI, are listed, and the CPU time elapsed in 

clustering is also listed in the last column. For the sake of fairness, we compare SCC and 

New-SCC under the condition of producing the same number of clusters for each dataset. 

Evidently, New-SCC performs better than SCC in F-score, RI, and NMI for most of the 

datasets. For example, for the Breast dataset, SCC has F-score = 0.7691, RI=0.6742, and NMI 

= 0.3349, while New-SCC has F-score = 0.9260, RI=0.8630, and NMI=0.6049. We can see 

that New-SCC provides a very significant improvement to SCC in this case. However, not all 

the datasets offer so much difference. 

 

For some datasets, New-SCC is even inferior to SCC in some measure or another. For 

example, for the Ecoli dataset, SCC has F-score = 0.7333, RI = 0.8229, and NMI = 0.6261, 

while New-SCC has F-score = 0.7212, RI = 0.8339, and NMI=0.6447. NEW-SCC is better in 

RI and NMI, but is worse in Fscore. Note that, in general, New-SCC takes more CPU time in 

clustering than SCC. This is reasonable, since SCC performs one round of iteration while 

New-SCC performs two or more rounds of iteration. For example, for the Breast dataset, SCC 

takes 0.02 seconds while New-SCC takes 0.25 seconds for clustering. 



 

Table 3. Accuracy results with different dimension sizes 

Dataset 
 

F-score RI NMI # clusters CPU time 

Breast 
 SCC 0.7691 0.6742 0.3349 2 0.02 

 New-SCC 0.9260 0.8630 0.6049 2 0.25 

Ecoli 
 SCC 0.7333 0.8229 0.6261 8 0.015 

 New-SCC 0.7212 0.8339 0.6447 8 0.29 

Glass 
 SCC 0.5209 0.5506 0.3440 6 0.01 

 New-SCC 0.5593 0.6472 0.4519 6 0.13 

Heart 
 SCC 0.6506 0.5273 0.0938 2 0.01 

 New-SCC 0.6470 0.5342 0.1075 2 0.056 

Iris 
 SCC 0.8639 0.8589 0.7351 3 0.006 

 New-SCC 0.8901 0.8781 0.7472 3 0.04 

Libras 
 SCC 0.3871 0.7619 0.4434 15 0.023 

 New-SCC 0.4767 0.8787 0.5603 15 0.37 

Wine 
 SCC 0.7201 0.7073 0.5525 3 0.007 

 New-SCC 0.7634 0.7546 0.6024 3 0.075 

Yeast 
 SCC 0.4184 0.5398 0.1985 10 0.07 

 New-SCC 0.4300 0.7288 0.2653 10 5.6 

 

V. Conclusion 

We have presented a new clustering algorithm, New-SCC, which is an improvement to the 
SCC clustering algorithm. SCC considers all the data points one by one sequentially. Clusters 
are created incrementally and automatically. If the input data point is similar enough to an 
existing cluster, the point is added to the cluster. Otherwise, the data point forms a new cluster 
of its own. SCC ends up with a set of clusters after it runs through the whole dataset once. 
However, once a data point is assigned to a cluster, there is no way to change the assignment 
afterwards. This may cause assignment errors and the efficacy of the clustering is reduced. 
New-SCC is aimed to overcome this shortcoming. A data point can be re-assigned to another 
cluster. Adding points into and removing points from a cluster are allowed to be done 
iteratively in the clustering process. New-SCC stops when all the assignments are stable, i.e., 
no assignment would be changed. As a result, New-SCC can produce better clusters. 
Experimental results have shown that NEW-SCC performs better than SCC for real world 
datasets. 
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