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Abstract 

In this paper, on the basis of complex variable moving least squares approximations, a new 
complex variable moving least squares interpolating (CVMLSI) method is proposed. In this 
method, a complete basis function and singular weight function are introduced to form the 
new basis function through orthogonalization process. Then a new interpolating shape 
function is derived, which satisfy the property of Kronecker   function. 

Combining the CVMLSI method with the weak integral form of the two-dimensional 
transient heat conduction problem, a complex variable element free Galerkin interpolating 
(CVEFGI) method for transient heat conduction problem is obtained. Due to the fact that the 
essential boundary conditions can be applied directly, the final discrete matrix equation is 
more concise than that in the non-interpolating complex variable element free Galerkin 
method. Finally, a numerical example is presented to illustrate the advantages of the CVEFGI 
method. 
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Introduction 

As a numerical tool, the meshless method [1] has developed widely in engineering analysis. 
Different with the traditional mesh based numerical methods, such as the finite element 
method, and boundary element method [2][3], the meshless method is built on a series of 
discrete nodes. So when using the meshless method to solve some special and complicated 
problems, such as nonlinear large deformation of polymer gel, crack propagation problem and 
so on, the re-meshing techniques are not necessary during the computing process [4][5]. 
 
One of the most common used methods to build the trial function is the moving least squares 
(MLS) approximation [6]. On the base of the MLS approximation, Belytschko presented the 
element free Galerkin (EFG) method [7]. With the development of the meshless method, a 
variety of complex variable moving least squares method approximations were proposed on 
the foundation of the MLS approximation. In these complex variable moving least squares 
approximations, the basis functions ),1()(T zz p  and ),1()(T zz p  are used to construct the 
trial functions [8][9]. Then the trial function of a two-dimensional problem can be formed 
with a one-dimensional basis function, which leads to the complex variable moving least 
squares approximations have higher efficiency. 
 
However, the basis functions above mentioned are not complete basis functions, which can 
not express all functions in the problem domain and may reduce the computing accuracy. 
Besides, in most of the complex variable moving least squares approximations, the obtained 



shape functions can not satisfy the property of Kronecker   function. In the meshless method 
built on these approximations, special techniques are useful to apply the essential boundary 
conditions, such as Lagrange multiplier and penalty methods [1][10]. 
 
Trying to solve above two problems, in this paper, we introduce a complete basis function 

),,1()(T zzz p  and the singular weight function. Then reference the idea presented by Ren 
[11], improve the basis function with orthogonalization process to get the new interpolating 
shape function. Then a new complex variable moving least squares interpolating (CVMLSI) 
method is presented. Combining the CVMLSI method with the weak integral form of the two-
dimensional transient heat conduction problem, a complex variable element free Galerkin 
interpolating (CVEFGI) method for heat conduction problem is obtained and the final matrix 
equation is derived. Finally, a numerical example is solved to validate the advantages of the 
CVEFGI method compared with non-interpolating complex variable element free Galerkin 
method. 

Methodology 

In this part, the CVMLSI method is introduced. According to the improved complex variable 
moving least squares (ICVMLS) approximation presented by Bai [9], the trial function can be 
expressed as 
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T p  is the complete basis function vector. In the two-

dimensional domain, the linear and quadratic basis function vectors are shown as 
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The local approximation at point z  can be expressed as 
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where ẑ  is the node whose influence domain covers the point z . 
 
Then, combining the singular weight function to make the following improvement on the 
space ),...,,( 21 mpppspan , 1)(1 zp  is normalized as [12] 
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let )(zpi  ),...,3,2( mi   be orthogonal to )()1( zz , then we can gain that 
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Then, the )(),...,(),( )()2()1( zbzbz m

zzz  are the new basis function, and the new interpolating 
function is 
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In Eq. (10), )( izzv   is the normalized weight function when consider the special condition 

1m , which is a weighted average of the function values at node Iz  in the influence domain 
of point z . The expression form is 
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Using the functional J  in the ICVMLS approximation [9] and ensure the J  is minimum, the 
corresponding unknown coefficient vector is obtained as, 
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Substituting Eq. (15) into Eq. (9), we can obtain 
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where )(zΦ  is the new interpolating shape function 
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The following singular weight function is used as [13] 
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where   is the radius of the influence domain of the point z . This singular weight function 
can satisfy general properties of other weight functions, such as the cubic and quartic spline 
weight function [1]. 
 
This is the CVMLSI method. Because the new complete basis function and the singular 
weight function is used to construct the trial function, the CVMLSI method has higher 
accuracy and the shape function obtained from this method can satisfy the property of 
Kronecker   function. 

Numerical Example 

The CVMLSI method is used to solve the two-dimensional transient heat conduction problem. 
The governing equation is [14] 
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with the following boundary conditions and initial condition 
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where )( t,T x  is the temperature field function, Q  is the internal heat generation per unit 

volume, T  is the given temperature on the boundary 1Γ , q  is the given density of the teat 

flux on the boundary 2Γ  and 0T  is the given initial temperature. 

 
When build the CVEFGI method for the two-dimensional transient heat conduction problem, 
using the CVMLSI method to disperse the spatial domain and using the difference method to 
disperse the time, then we can obtain the final matrix equation 
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where t  is the time step, 
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This is the CVEFGI method for the two-dimensional transient heat conduction problem. 
Compared with the improved complex variable element-free Galerkin (ICVEFG) method 
based on the ICVMLS approximation, the above expressions of matrices are more concise 
[14]. 
 
For a specific two-dimensional transient heat conduction problem with a square domain, the 
control equation is 
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and the essential boundary conditions are 
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The initial condition is  
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and the analytical solution is 
        )sin()sin(),,( 21

22
121 xxextxxT t .                                     (45) 

 
In the CVEFGI method, the linear basis function and 44  Gauss points are used. Try to 
make error analysis, the relative error is 
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where num
iT  is the numerical solution and exact

iT  is the analytical solution. 

 



In this example, 1515  nodes are distributed uniformly in the square domain. The scaling 
parameter is 2max d , and the time step is st 001.0 . For the ICVEFG method, the penalty 

factor is 4100.1  . 
 
Fig. 1 and Fig. 2 compare the solutions of heat distributions at 22 x  and 21 x  
respectively with different times. The numerical solutions obtained from the CVEFGI method 
and the ICVEFG method are in good agreement with the analytical solutions at different times. 
Fig. 3 and Fig. 4 show the relative errors of the CVEFGI method and the ICVEFG method at 
different times at 22 x  and 21 x  respectively. We can see compared with the 
ICVEFG method, the CVEFGI method has higher computing accuracy, especially on the 
borders. 
 
Besides due to the essential boundary conditions can be applied directly in the CVEFGI 
method, the final discrete equation of this transient heat conduction problem is simpler than 
that in the ICVEFG method. And there is need to choose suitable penalty factor or Lagrange 
multiplier which will save more computing time than the ICVEFG method. 
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Figure 1. Heat distributions at 22 x  with different times 

 



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

2.4

2.6

2.8

3.0

3.2

3.4

st 5.0

st 3.0

st 1.0

T
(


,x
2)

x
2

 

 

 Analytical
 CVEFGI
 ICVEFG

 
Figure 2. Heat distributions at 21 x  with different times 
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Figure 3. Relative errors at 22 x  with different times 
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Figure 4. Relative errors at 21 x  with different times 

Conclusions 

In this paper, a complete basis function and singular weight function are introduced to derive 
the new shape function, and then the CVMLSI method is presented. In the CVMLSI method, 
the new shape function can satisfy the Kronecker   function. So compared with the ICVMLS 
approximation with non-interpolating shape function, the CVMLSI method has higher 
accuracy. Combining the weak integral form of the two-dimensional transient heat conduction 
problem and the CVMLSI method, the CVEFGI method for the heat conduction problem is 
obtained. In the CVEFGI method, because the essential boundary conditions can be applied 
directly, the final matrix equation is more concise and it is unnecessary to choose appropriate 
penalty factor. The numerical example shows that the CVEFGI method is more accurate and 
efficient than the ICVEFG method. 
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