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Abstract 
We propose a micromechanical computational framework for the high fidelity prediction of 
failure mechanisms in brittle polycrystalline materials. A three-dimensional direct numerical 
simulation of polycrystalline structures is constructed to explicitly account for the 
microstructural features, such as grain sizes, grain orientations, and grain boundary 
misorientations, by using the finite element method. In particular, grain boundaries are 
represented by a thin layer of elements with non-zero misorientation angles. The Eigen-fracture 
algorithm is employed to predict the crack propagation in the grain structure including 
intergranular and transgranular fractures. In the Eigen-fracture approach, an equivalent energy 
release rate is defined at the finite elements to evaluate the local failure state by comparing to 
the critical energy release rate, which varies at the grain boundaries and the interior of grains. 
Moreover, the constitutive model is considered as functions of the local microstructure features. 
As a result, the anisotropic response of brittle polycrystalline materials and the interaction 
between the fracture and topological defects in the microstructure under general loading 
conditions are explicitly modeled. Finally, the compressive dynamic response of hexagonal SiC 
with equiaxed grain structures is studied at different strain rates by using the proposed 
computational framework. The predicted compressive strength as well as the strain rate 
dependence of SiC agrees well with measurements in Split Hopkins Pressure Bar (SHPB) 
experiments. 
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Introduction 

Modern structural ceramics and ceramic composites have been considered as high-performance 
materials due to the high-temperature stability, high hardness, low density and superior elastic 
moduli and strength. These exceptional thermal and mechanical properties in ceramics lead to 
a wide range of applications, such as lightweight armors for personal protection and high 
performance turbine blades. Nevertheless, unlike metal or polymers, the failure of ceramics is 
usually sudden and catastrophic. This feature in failure mechanisms of brittle polycrystalline 
materials including monolithic ceramics and ceramic composites makes it challenging to 
accurately predict their resistance to extreme loading conditions, especially impact loading at 
high strain rates. In addition, the ultimate strength of ceramic has been observed to be strain-
rate sensitive ([1]–[4]). While it has been generally recognized that the rate-dependent behavior 
is related to the intrinsic microstructures and flaws (e.g., crystal structure, grain orientation, 
grain boundaries, micro-voids, second phase particle and stacking faults), evolution of the 
microstructure, in particular, dynamic interaction between the crack and topological defects in 
the microstructure, at high strain rates has not been addressed quantitatively due to the lack of 
fundamental understanding and the limitations in experimental diagnostics. Sarva and Nasser 



studied strain rate sensitivity of Silicon Carbide under compression[1]. They found that, beside 
of the compressive strength, the fragment sizes are also rate sensitive. Smaller fragment sizes 
were obtained at higher strain rates, which indicates more micro-cracks took place. Wang and 
Ramesh performed experimental studies on hot-pressed SiC under high strain rate compression 
in 2004 [2]. By analyzing the failure process, their results show that the subcritical micro crack 
propagates and coalesces before macro crack splits. Recent studies on the dynamic behavior of 
AlN ([3], [4]) indicates that transgranular fracture becomes more common at high strain rates. 
Chan and Ravichandran performed similar studies on AlN [5], which show that ceramics exhibit 
an increase in shear strength with increasing confinement pressure and a strain-rate-sensitive 
material model was developed with fitting to experimental data. To date, the experimental 
investigations listed in the above literature and others characterize the rate-dependent dynamic 
response of brittle polycrystalline materials at the macro-scale. However, the underlying 
micromechanisms are only perceived in a qualitative manner. There is very few, if any, 
quantitative analysis at the microstructure level to explain the rate sensitivity of the compressive 
strength in brittle materials by experiments. 
 
Alternatively, computational models and numerical simulations have been utilized to predict 
the strain rate dependent failure mechanisms in brittle materials. The wing-crack array model 
([1], [2], [6]) is commonly adopted to explain the mechanism of strain rate effect. The wing-
crack array model utilizes the local stress intensity at the preexisting crack as the failure 
criterion. The rate-dependent influence is included by considering inertia effects at the crack 
tip. The final strength of the material is related to the initial flaw size and the flaw distribution. 
However, rate-dependent material coefficients are introduced in the model and need to be 
calibrated to experiments. On the other hand, topological defects in the microstructure, such as 
grain boundaries and grain orientations are not explicitly accounted for. The intergranular 
fractures are often modeled using a cohesive surface approach within finite element formulation 
([7]–[10]).The cohesive method provides a phenomenological framework to describe the 
traction–displacement relation of the crack surface. The fracture characteristics and anisotropic 
properties of the grain boundaries are embedded in the cohesive elements. When the crack 
surfaces are fully separated, a contact algorithm can be employed to deal with the friction 
between fractured interfaces. Similar to wing crack model, an intrinsic flaw length is introduced 
into the model. In addition, a characteristic relaxation time is derived to explain the rate 
dependent character of the failure strength ([11], [12]). Nittur and others[9] investigated the 
dynamic fragmentation of ceramic under compression. They have found that the material 
remains largely intact when peak compressive strength is achieved, but shows a catastrophic 
increase in accumulated damage after that point. Sfantos and Aliabadi[10] also studied the 
intergranular fracture in brittle material under compression. They found that the internal friction 
of the material becomes important in cases of compressive localized pressures over cracked 
surfaces. As this internal friction increases, crack propagation was slowed down while crack 
branching appeared faster. For most polycrystalline related cohesive models, only the 
intergranular fracture is included ([7]–[10]). It is computationally consuming for modeling 
transgranular fracture since each element surface/edge require a cohesive element. The fracture 
path is constrained to follow element interfaces that rely on the mesh spacing and orientation. 
It has been stated out that the cohesive zone models suffer from mesh-dependence and the lack 
of strict conservation and convergence properties [13]. Most recently, the phase field model 
becomes popular to simulate the fracture process ([14]–[16]) In this method, the discontinuities 
caused by crack is approximated by a phase-field. The phase field is independent of the 
displacement field and can be calculated implicitly. An order parameter is introduced along the 
crack to accommodate the material transition from the undamaged to the damaged state. The 
phase field model for quasi-static brittle fracture can be derived from the variational formulation 



for Griffith’s type of fracture models [17]. Therefore, less user-defined parameters and fracture 
criteria are required. However, the material properties of the damaged material need to be 
estimated and the order parameter function through the fracture thickness needs to be calibrated. 
The polycrystalline phase field model developed by Clayton and Knap is able to capture the 
changes of crack paths and bulk material properties by changing the grain boundary properties. 
However, to predict the strain rate sensitivity in the dynamic response of brittle materials, rate-
dependent phase field model needs to be further developed. 
 
Another variational approach to fracture is deducted using Eigen-fracture scheme based on 
element erosion ([18],[19]). Similar to phase field model, the discontinuities are approximated 
using an Eigen-deformation field, which is widely used in mechanics to describe deformation 
modes that cost no local energy. Instead of considering the energy minimization globally by the 
phase field method, the Eigen-fracture approach regards fracture as a dissipative process with 
dissipation located at the crack front [20]. In this approach, the crack front velocity obeys a 
kinetic law in terms of the local driving force, and the entire trajectories of the system, including 
the crack paths, follow as minimizers of energy-dissipation functional [21]. In this regard, the 
propagation of the crack can be related to the combination and competition of various energy 
dissipation pathways in the materials microstructure. Different types of defects, preexisting 
micro cracks, grain boundaries and etc., can all be considered as potential energy sinks to 
minimize energy when stress flow passing by. 
 
In this work, a micromechanical computational framework based on the Eigen-fracture scheme 
is presented for the high fidelity prediction of failure mechanisms in brittle polycrystalline 
materials. A direct numerical simulation of the polycrystalline structure explicitly accounts for 
the microstructural features, such as grain sizes, grain orientations, and grain boundary 
misorientations, by using the finite element method. Furthermore, it furnishes an effective 
manner to directly accommodate other types of defects, including porosity and second phase 
particles. An equivalent energy release rate is defined at the finite elements to evaluate the local 
failure state by comparing to the critical energy release rate, which varies at the grain boundaries 
and the interior of grains. Since the calculation of the equivalent energy release rate is carried 
out within a local neighborhood of an element, it has the effect of eliminating spurious mesh-
dependent artifacts. The Eigen-fracture scheme is known to properly converge to Griffith 
fracture in the limit of vanishingly small mesh sizes. The anisotropic characters of the 
polycrystalline structure are obtained by using a crystal elasticity constitutive model and grain 
boundary properties related to the misorientation angles. In order to validate the proposed 
computational framework, the compressive dynamic response of hexagonal SiC with equiaxed 
grain structures is studied numerically at different strain rates and compared to experimental 
measurements. 

General Framework 

In this section, the general framework for analyzing the brittle polycrystalline material response 
at the grain scale will be presented based on the finite element method. Since this work focuses 
on the crack propagation in the polycrystalline microstructure (6H SiC in particular), the crystal 
elasticity model is integrated to describe the anisotropic constitutive relationship ([22], [23]). 
The study of failure mechanisms is carried out by using the Eigen-fracture model ([18], [24]), 
which is an energy-based variational fracture principle to the generalized Griffith’s model. 

Governing equations 

Given initial and boundary conditions, the dynamic deformation problem can be analyzed using 
finite element method by seeking solutions of the governing equations of conservation of mass 



and momentum. Consider a body initially occupying a reference configuration Ω0  in a d-
dimensional Euclidean space with boundary Γ. Suppose the boundary can be decomposed into 
the essential boundary Γ𝑢𝑢 and natural boundary Γ𝑡𝑡, such that Γ = Γ𝑢𝑢 ∪ Γ𝑡𝑡 and Γ𝑢𝑢 ∩ Γ𝑡𝑡 = ∅. The 
differential form of conservation equations can be written, respectively, in the Lagrangian 
configuration as 

                                                             𝜌𝜌 = 𝜌𝜌0
𝐽𝐽

  in Ω0,                                                               (1) 

                                                             ∇ ⋅ 𝑷𝑷 + 𝜌𝜌0𝑩𝑩 = 𝜌𝜌0𝑨𝑨        in Ω0,                                      (2) 

where 𝜌𝜌0 and 𝜌𝜌 are the density in the reference and deformed configuration, respectively, 𝑭𝑭 the 
deformation gradient, 𝐽𝐽 the Jacobian defined as 𝐽𝐽 = det (𝑭𝑭), 𝑷𝑷 the first Piola-Kirchhoff stress 
tensor, 𝑩𝑩 the body force density per unit undeformed volume and 𝑨𝑨 the acceleration. The first 
Piola-Kirchhoff stress tensor 𝑷𝑷 and the Cauchy stress tensor 𝝈𝝈 is related as 
                                                              𝑷𝑷 = 𝐽𝐽𝝈𝝈𝑭𝑭−𝑇𝑇,                                                                 (3) 
The essential and natural boundary conditions are given by 
                                                              𝒖𝒖 = 𝒖𝒖�         on Γ𝑢𝑢,                                                         (4) 
                                                              𝑷𝑷 ⋅ 𝑵𝑵 = 𝒕̅𝒕    on Γ𝑡𝑡,                                                        (5) 
where 𝒖𝒖�, 𝒕̅𝒕 and 𝑵𝑵  are the prescribed displacement on the essential boundary, the external 
traction on the natural boundary and the unit outward normal to Γ𝑡𝑡 , respectively. The 
displacement is denoted by 𝒖𝒖, which is related to the deformation gradient as 

                                                    𝑭𝑭 = ∇𝒖𝒖 + 𝐈𝐈.                                                                 (6) 

The weak form associated with the governing equations follows from the principle of virtual 
work as, 
                                 ∫ [𝑷𝑷:∇(𝛿𝛿𝒖𝒖) − 𝜌𝜌0(𝑩𝑩− 𝑨𝑨) ⋅ 𝛿𝛿𝒖𝒖]𝑑𝑑𝑑𝑑 − ∫ 𝒕̅𝒕 ⋅ 𝛿𝛿𝒖𝒖𝑑𝑑𝑑𝑑 

Γ𝑡𝑡
 
Ω0

= 0.                        (7) 
In this framework, the above weak form is discretized by finite elements and the system of 
discretized equations is solved by the Newmark’s algorithm ([25], [26]). 

Constitutive model 

We consider a perfectly brittle material. The constitutive behavior can be described by the 
simplest hyperelastic material model, for which 
                                                                 𝑷𝑷 = 𝜕𝜕𝜕𝜕(𝑭𝑭)

𝜕𝜕𝑭𝑭
,                                                                (8) 

where 𝑊𝑊(𝑭𝑭) is the strain energy density per unit volume. Within a finite time increment in the 
Newmark’s method, the response of the brittle polycrystalline material can be approximated as 
a small strain problem. In specific, the logarithmic strain is adopted which is defined as [???], 

                                                             𝜺𝜺 = 1
2

ln(𝑭𝑭𝑇𝑇𝑭𝑭).                                                             (9) 

For a high-fidelity prediction of the dynamic response of the materials under extreme loading 
conditions, such as high pressure and high strain rates, the strain energy density can be divided 
into the volumetric and isochoric parts,  

                                                𝑊𝑊(𝜺𝜺) = 𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣(𝐽𝐽) + 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖).                                             (10) 

Particularly, the quadratic equation of state and general hook’s law are employed to model the 
volumetric and isochoric responses, respectively, i.e., 

                                                   𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣(𝐽𝐽) = 1
2
𝐾𝐾(𝐽𝐽 − 1)2,                                                       (11) 

                                               𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖�𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖� = 1
2
𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖:𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖: 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖,                                                (12) 



where K is the bulk modulus and 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖 is the deviatoric part of the small strain tensor, 

                                                       𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜺𝜺 − 1
3

tr(𝜺𝜺)𝐈𝐈 .                                                          (13) 

Thus, the Cauchy stress tensor σ can be derived from Coleman’s relations as: 

                                            𝝈𝝈 = 𝐽𝐽−1𝑷𝑷𝑭𝑭𝑇𝑇 = 𝐾𝐾(𝐽𝐽 − 1) + 𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖: 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖.                                          (14) 

The constitutive model in the simulations of deformation and failure in brittle materials for a 
finite size sample is usually homogeneous, and often isotropic. This approximation is fairly 
adequate as long as the structure has characteristic dimensions much larger than the 
microstructure dimensions of the materials, i.e. grain sizes. However, this continuum approach 
breaks down at the microscopic level when dealing with crack initiation and propagation in the 
microstructure, especially distinguished inter- and transgranular fractures. Indeed, the local 
stress concentration induced by the microstructure features such as crystal structure and 
orientations may have a strong influence on the crack growth and eventually affect the ultimate 
strength of the material. In this framework, the polycrystalline structure is directly simulated 
and discretized by finite elements. The grain structure is represented by the definition of the 
grain orientation and misorientation angles at each element. In specific, the grain boundaries 
consist of elements with non-zero misorientation angles as a transition zone. Figure 1 shows a 
typical finite element mesh for a polycrystalline structure in 2D. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Typical 2D mesh for a polycrystalline structure: a) Grain orientation b) Grain 
boundary misorientation. 

 
Therefore, a crystallographic constitutive model is employed in the current study to model the 
anisotropic behavior in the individual grains. The number of independent material parameters 
in the elastic moduli tensor 𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖 is subject to the symmetry system of the crystal structure. For 
the hexagonal structure of SiC, the stiffness tensor can be written in terms of five independent 
parameters with matrix notation:  



                                    

11 12 13

11 13

33

44

44

11 12

0 0 0
0 0 0
0 0 0

0 0
0

2

C C C
C C

C
C

sym C
C C

 
 
 
 
 =  
 
 

− 
  

C .                                      (15) 

Table 1. The measured elastic constant in a unit of GPa of 6H-SiC at room temperature: 

𝐶𝐶11 𝐶𝐶33 𝐶𝐶44 𝐶𝐶12 𝐶𝐶13 

501 553 163 111 52 
 
In order to compute the isochoric stress and strain energy, several elastic constants need to be 
modified: 

                           𝐶𝐶11𝑖𝑖𝑖𝑖𝑖𝑖 = 7𝐶𝐶11−2𝐶𝐶12−4𝐶𝐶13−𝐶𝐶33
9

,  𝐶𝐶12𝑖𝑖𝑖𝑖𝑖𝑖 = −2𝐶𝐶11+7𝐶𝐶12−4𝐶𝐶13−𝐶𝐶33
9

, 

                            𝐶𝐶13𝑖𝑖𝑖𝑖𝑖𝑖 = −2𝐶𝐶11−2𝐶𝐶12+5𝐶𝐶13−𝐶𝐶33
9

,  𝐶𝐶33𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶11+𝐶𝐶12+2𝐶𝐶13−4𝐶𝐶33
9

.                              (16) 

Evaluation of the stresses at each element is performed in the local crystal coordinates instead 
of the global Cartesian coordinate system. The grain orientation is defined as the angle between 
the local crystal coordinates and global reference coordinate system, which is denoted by the 
proper Euler angles (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to rotation axe z-x'-z". In three dimensions, the grain 
orientations can also be represented by a 3 × 3 orthonormal rotation matrix R, with RTR=I, i.e., 
 

𝑹𝑹 = �
cos𝛼𝛼 cos 𝛾𝛾 − cos𝛽𝛽 sin𝛼𝛼 sin 𝛾𝛾 −cos𝛼𝛼 sin 𝛾𝛾 − cos𝛽𝛽 cos 𝛾𝛾 sin𝛼𝛼 sin𝛼𝛼 sin𝛽𝛽
cos 𝛾𝛾 sin𝛼𝛼 + cos𝛼𝛼 cos𝛽𝛽 sin 𝛾𝛾 cos𝛼𝛼 cos𝛽𝛽 cos 𝛾𝛾 − sin𝛼𝛼 sin 𝛾𝛾 −cos𝛼𝛼 sin𝛽𝛽

sin𝛽𝛽 sin 𝛾𝛾 cos 𝛾𝛾 sin𝛽𝛽 cos𝛽𝛽
�. (17) 

 
For non-zero grain orientations, a rotation of the constitutive relation is required. The coordinate 
transformations of fourth order stiffness tensor can be written in the following tensor notation, 

                                             𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝑅𝑅𝑝𝑝𝑝𝑝𝑅𝑅𝑞𝑞𝑞𝑞𝑅𝑅𝑟𝑟𝑟𝑟𝑅𝑅𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                                                      (18) 

 and in the matrix notation as  

                                                          𝑪𝑪′ = 𝑫𝑫𝑫𝑫𝑫𝑫𝑇𝑇,                                                                  (19) 

where the 6 × 6 transformation matrix D related to the R as 

         

2 2 2
11 12 13 12 13 13 11 11 12
2 2 2
21 22 23 22 23 23 21 21 22
2 2 2
31 32 33 32 33 33 31 31 32

21 31 22 32 23 33 22 33 23 32 21 33 23 31 22 31 21 32

31 11 32 12 33 13 13 32 12 33 13 31 11

2 2 2
2 2 2
2 2 2

R R R R R R R R R
R R R R R R R R R
R R R R R R R R R

R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R

=
+ + +
+ +

D

33 11 32 12 31

11 21 12 22 13 23 12 23 13 22 13 21 11 23 11 22 12 21

R R R R
R R R R R R R R R R R R R R R R R R

 
 
 
 
 
 
 +
 

+ + +  

.     (20) 



Fracture model: Eigen-fracture approach 

Finally, we present the Eigen-fracture approach in our framework for tracking the inter- and 
transgranular fractures in brittle polycrystalline materials. Consider an elastic body occupying 
a domain Ω ⊂ ℝ𝑛𝑛 , 𝑛𝑛 ≥ 2 . The boundary of the body consists of an exterior boundary Γ, 
corresponding to the boundary of the uncracked body, and a collection of cracks jointly defining 
a crack set |A|. To this end, the energy-dissipation functional of a perfectly brittle material is 
given by 

                       𝐹𝐹(𝒖𝒖,𝐴𝐴, 𝑡𝑡) = ∫ 𝑊𝑊�𝜺𝜺(𝒖𝒖)�𝑑𝑑𝑑𝑑 − ∫ 𝒕̅𝒕 ⋅ 𝒖𝒖𝑑𝑑𝑑𝑑Γt
+ 𝐺𝐺𝑐𝑐|𝐴𝐴|Ω\𝐴𝐴 ,                                      (21) 

where Ω\A denotes the domain of the body with the crack set excluded, 𝐺𝐺𝑐𝑐 is the critical energy 
release rate, and |𝐴𝐴| denotes the area of the crack set. Due to the irreversibility of the fracture, 
the crack set 𝐴𝐴 must be increasing monotonically over time. Thus, the evolution of the crack 
growth and the corresponding stress field equilibrium can be sought by minimizing 𝐹𝐹(𝒖𝒖,𝐴𝐴, 𝑡𝑡) 
at all times with respect to both the displacement field 𝒖𝒖 and the crack set 𝐴𝐴. Nevertheless, a 
mathematical description of the crack surface is difficult to be derived in engineering 
applications, especially for three-dimensional problems. With the help of the eigen-deformation 
field 𝜺𝜺∗, which describes the crack set occurring in the material as {𝜺𝜺∗ ≠ 0}, the crack-tracking 
problem in perfectly brittle materials can be simplified as the minimization of the action [19] 

                             𝐹𝐹𝜖𝜖(𝒖𝒖, 𝜺𝜺∗, 𝑡𝑡) = ∫ 𝑊𝑊(𝜺𝜺(𝒖𝒖) − 𝜺𝜺∗)𝑑𝑑𝑑𝑑 − ∫ 𝒕̅𝒕 ⋅ 𝒖𝒖𝑑𝑑𝑑𝑑Γt
+ 𝐺𝐺𝑐𝑐

‖𝐶𝐶𝜖𝜖‖
2𝜖𝜖Ω ,                     (22) 

where 𝜖𝜖 is a small parameter that defines an 𝜖𝜖 −neigborhood of the crack set, 𝐵𝐵𝜖𝜖, and ||𝐶𝐶𝜖𝜖|| is 
the volume of 𝐵𝐵𝜖𝜖, as shown in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.Visulization of the crack 𝝐𝝐-neighborhood of the crack set |A|. Elements in the 
crack 𝝐𝝐-neighborhood are marked with black dots. 

 
The stationary of the simplified action in Equation (22) with respect to 𝜺𝜺∗ leads to the definition 
of an effective energy release rate at each finite element, Ω𝑒𝑒, i.e., 

                                                     𝐺𝐺𝑒𝑒 =  𝛼𝛼𝛼𝛼
‖𝐶𝐶𝜖𝜖‖

∑ 𝑉𝑉𝑒𝑒𝑊𝑊(𝜀𝜀)Ω𝑒𝑒∈𝐵𝐵𝜖𝜖 .                                                 (23) 

Thus, the energy release rate attendant to the failure of an element is estimated by a local energy 
averaging procedure in 𝐵𝐵𝜖𝜖 , and elements are failed when the effective energy release rate 
exceeds the critical energy release rate 𝐺𝐺𝑐𝑐  as a minimizer of 𝐹𝐹𝜖𝜖(𝒖𝒖, 𝜺𝜺∗, 𝑡𝑡), i.e., 𝐺𝐺𝑒𝑒 ≥ 𝐺𝐺𝑐𝑐 . The 



calculation of the effective energy release rate is carried out within a local neighborhood of the 
element and requires no explicit representation of the crack. For linear elasticity, the Eigen-
fracture scheme is known to properly converge to the solution of Griffith fracture theory in the 
limit of vanishingly small mesh sizes [18]. In addition, the local neighborhood averaging of the 
energy has the effect of eliminating spurious mesh-dependent artifacts. While the minimization 
problem states the fracture is produced once the averaged local strain energy density exceeds a 
critical value, it is necessary to further investigate which part of the strain energy density 
contributes to the crack propagation under complex stress states.[27]. For instance, when an 
element is under hydrostatic tension, its total strain energy density may be used in the failure 
criterion to calculate the effective energy release rate. But when an element is under hydrostatic 
compression, only the isochoric strain energy is dissipated due to new fracture surface 
generation. 
 
On the other hand, in the Griffith theory of brittle fracture, the critical energy release rate can 
be related to the surface energy density of potential fracture surfaces. It has been generally 
recognized that the fracture resistance of brittle materials heavily relies on the distribution of 
topological defects in the microstructure including grain boundaries, porosity and second phase 
particles, under dynamic loading conditions. In another word, the surface energy density is no 
longer a single value for a specific type of material but should be considered as a function of 
the local microstructure features. Consequently, by integrating a microstructure-informed 
critical energy release rate in the Eigen-fracture approach at each element, it allows us to 
explicitly model the interactions between the fracture and topological defects in the 
microstructure. In this work, only the grain boundaries are explicitly accounted for, where the 
critical energy release rate can be written as 𝐺𝐺𝑐𝑐

𝑔𝑔𝑔𝑔 = 2𝛾𝛾𝑔𝑔𝑔𝑔, with 𝛾𝛾𝑔𝑔𝑔𝑔 the surface energy density 
of the grain boundary or grain boundary energy. In Reed and Shockley’s dislocation model 
[28], a simple formula of grain boundary energy is derived for a 2-D cubic elastic material with 
small misorientation angles θ < 45˚. In this formula, the grain boundary energy increases as the 
misorientation angle increases. However, in reality, the grain boundary properties such as 
energy, mobility, and diffusivity etc. are much more complicated, especially for a 3-D problem. 
Abrupt changes or even discontinuity may occur at critical misorientation angles. Therefore, in 
this work, 𝐺𝐺𝑐𝑐

𝑔𝑔𝑔𝑔 is defined in Equation (24) as a power law function of its misorientation angle 
for the sake of simplicity. A more precise study will be deployed in the future using MD 
simulations. 

                                                             𝐺𝐺𝑐𝑐(𝜃𝜃) = 𝐺𝐺𝑐𝑐0 �1− � 𝜃𝜃𝜃𝜃0
�
𝑚𝑚
�,                                                     (24) 

where Gc0 is the critical energy release rate of a single crystal, θ0 is the reference misorientation 
angle, m is the exponential for grain boundary weakening. The misorientation angle θ can be 
calculated using the orientations of two neighboring grains, 

                                                   𝜃𝜃 = min �cos−1 �𝑡𝑡𝑡𝑡�𝑹𝑹𝐵𝐵𝑹𝑹𝐴𝐴
−1�−1
2

��.                                           (25) 

where RA and RB are the rotation matrices for two neighboring grains A and B. 

Numerical Simulations and Results 

The proposed micromechanical computational framework is utilized to understand the rate 
dependence of the compressive strength of brittle polycrystalline materials. Particularly, the 
dynamic response of 6H-SiC under compressive loading in split Hopkins pressure bar 
experiments[29] is studied numerically in this work. 



 
Figure 3. a) Surface meshes of the specimen and b) Interior meshes: Inner grain 

elements (grey) is enclosed by grain boundary elements (colored). Note that the color 
denotes the misorientation angles. 

 
Figure 3 shows a typical 3D mesh of the polycrystalline brittle material in our simulations. The 
boundary conditions are illustrated in Figure 3 (a). The nodes on the front surface are assigned 
with displacements in x-direction following a linearly increasing velocity up to a constant value, 
while the nodes on the back surface can only move in y-z plane. The polycrystalline specimen 
consists of 45 equiaxed grains, which aggregate a cuboid with a dimension of 1000 μm × 600 
μm × 600 μm. The average volume for an individual grain, Vgrain is about 8×106 μm3. The 
average grain size can be estimated as 𝑑𝑑 = �𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔3 = 200 𝜇𝜇𝜇𝜇 . The computational mesh 
comprises 76,142 nodes and 427,264 tetrahedra. The grain boundaries are represented by two 
thin layers of elements adjacent to the interior surfaces. All the meshes on the interior surfaces 
are conformal and their nodes are shared by neighboring grain boundary elements. The average 
volume ratio between grain boundary and inter-grain elements is about 29.5%. The material 
properties and model parameters used in the simulations are listed in Table 2.  
 

Table 2. Parameters used in simulation 

Parameter Value Definition 
K 231 Bulk modulus [GPa] 
μ 192 Shear modulus [GPa] 
ρ 3.21 Density [g/cm3] 
ν 0.16 Poisson’s ratio 

Gc 50 Critical energy release rate for single crystal [J/m2] 
θ0 180 Relative misorientation angle in 𝐺𝐺𝑐𝑐

𝑔𝑔𝑔𝑔 function [degree] 
m 0.5 Exponential for grain boundary weakening 
𝜖𝜖 1.5he Epsilon neighbor size, where he is the element size 

 
A series of snapshots in Figure 4 illustrates the fracture evolution at strain rate 3300 s-1. The 
black translucent structure denotes the grain boundaries while the reddish elements represent 
the fracture zone. As shown in Figure 4(a), the cracks first initiate at grain boundaries on the 
front and back surfaces of the specimen. As the stress increases, weak grain boundaries inside 
of the specimen start to fail. While the intergranular cracks propagate into the material, the 
transition from intergranular fracture to transgranular fracture occurs as demonstrated in Figure 



4(b). The transgranular fracture grows along the loading direction and creates longitudinal splits 
on the peripheral surfaces in Figure 4(c), which agrees well with the experimental observations 
[2]. The transgranular fractures connect the spatially dispersed grain boundary cracks into a 
network. As a result, the initially integrated material are divided into several pillars. In the end, 
the divided material comminutes one by one very rapidly until all the material fails as the 
deposited energy accumulates, Figure 4(d).  

 
Figure 4. Evolution for cracks under uniaxial compression: a) crack surfaces initiation 

at grain boundaries, b) crack propagation, c) interaction between cracks and d) 
comminution. 

 
The corresponding stress history of SiC under compressive loading at strain rate 3300 s-1 is 
shown in Figure 5. The stress is calculated as the homogenized one over the entire specimen 
alone the loading axis. As seen in the figure, the predicted compressive strength of SiC at strain 
rate 3300 s-1 by the direct numerical simulation of the polycrystalline structure is 3.45 GPa. 
After the stress reaches the peak, it dramatically drops and then becomes stable. The residual 
stress after the drop is due to the resistance to deformation in the comminuted material. 
Comparing Figure 4 to Figure 5, it is interesting to note that the stress continues to build up 
after the initial grain boundary cracks. The strengthening gradually slows down as the 
transgranular fracture propagates. When individual cracks coalesce with each other into a 
network, the stress approaches its maximum level. Afterward, the stress suffers a sudden 
decrease due to the material comminution.  



 
Figure 5. Stress history for strain rate at 3300 s-1. The “a”, “b”, “c” and “d” locations 
pointed out in the stress curve correspond with the series of fracture images shown in 

Figure 4. 

 
The same mesh and material configuration were exercised under dynamic compressive loading 
conditions at five different strain rates, ranging from O(10) to O(104) s-1. The compressive 
strengths at various strain rates are plotted in Figure 6. The nonlinearity of strain rate 
dependence is illustrated in the figure. It is evident that there is a critical turning point between 
the strain rate 100 s-1 and 1000 s-1. Before the turning point, the compressive strength increases 
slightly as the strain rate increases. As the strain rate goes beyond 1000 s-1, a dramatic jump in 
the compressive strength is developed. The critical turning point predicted by our model 
matches well with the experimental measurements by Sarva and Nasser[1]. It is worth 
mentioning that neither the constitutive model nor the fracture model is defined to be rate 
dependent in our framework. The strain rate dependence of the compressive strength is a natural 
output of the model and results from the selection of the most effective energy dissipation 
pathways (i.e. intergranular or transgranular fracture) in the microstructure automatically by the 
algorithm. Therefore, the micromechanical computational framework allows us to develop a 
fundamental understanding of the rate-dependent fracture properties without introducing rate-
dependent material parameters that need to be calibrated to experiments. 

 
Figure 6. Strain rate dependent compressive strength of polycrystalline SiC predicted by 

the model.  



Conclusions and Future Work 

We have developed a three-dimensional micromechanical computational framework for the 
direct numerical simulation (DNS) of failure in brittle polycrystalline structures based on the 
finite element method and Eigen-fracture approach. The interaction of crack with the 
topological defects, such as grain boundaries, in the microstructure is explicitly modeled by 
considering the equivalent energy release rate as a function of the microstructural features, in 
specific, the grain boundary misorientation angles. The anisotropic dynamic response of 
polycrystalline structures is predicted by using the crystal elasticity model with local material 
properties related to the grain orientation and misorientations. The numerical model is validated 
in the example of unconfined dynamic compression tests of 6H-SiC at different strain rates. 
Without introducing any rate-dependent model parameters, the computational framework 
successfully predicts the rate sensitivity in the compressive strength of brittle polycrystalline 
structures. Our results show the rate dependence is intimately related to the competition and 
combination of intergranular and transgranular fractures in the microstructure. The selection of 
the optimal energy dissipation pathways in the microstructure in the case of high energy density 
deposition in a short time determines the ultimate strength of the brittle polycrystalline materials. 
It is evident that the proposed computational framework enables an automatic selection of the 
most effective energy dissipation pathways by integrating topological defect dependent local 
energy release rates in the DNS of the polycrystalline microstructure. Further investigation is 
necessary in order to quantify the correlation between the dynamic strength and the comparison 
of trans- and intergranular fractures at the microscale. 
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