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Abstract 
Compact finite difference schemes have high order of accuracy and high numerical resolution. 
Because of such characteristics, these schemes are suitable for numerical simulation of multi-scale 
phenomena, like direct numerical simulation, large eddy simulation and computational 
aeroacoustics. In this paper, we intend to optimize pentadiagonal compact schemes with a seven 
point stencil, using maximum error norm with different error threshold. The second goal of this 
paper is to increase the order of accuracy of the optimized schemes, because optimized schemes 
with higher order of accuracy resolve large scales better than the lower order ones. Finally, by 
using numerical experiments, we investigate the order of accuracy and numerical resolution of the 
new optimized compact schemes. 
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Introduction 

Multi-scale phenomena are common in many physical and engineering fields like aerodynamics 
and astrophysics. Turbulence is an important of multi-scale phenomena and direct numerical 
simulation (DNS) and large eddy simulation (LES) are useful tools to study this problem and 
understand its underlying physical mechanisms. Another example of such phenomena is 
aerodynamically generated noise and computational aeroacoustics (CAA). Multi-scale phenomena 
contain a wide range of time- and length-scales and the largest scale can be orders of magnitude 
larger than the smallest scales, for example in aeroacoustics problems amplitude of acoustic waves 
are very small in comparison to mean flow and sound intensity can be five or six order of 
magnitude smaller [18]. 
 
To correctly resolve small scales in numerical simulation of multi-scale phenomena, numerical 
scheme should have high order of accuracy and high numerical resolution. Another issue in 
numerical simulation of multi-scale phenomena marginally resolved scales because error from 
such scales may affect whole computation. To resolve these scales more accurately, the numerical 
resolution at higher wavenumbers should be increased and optimization of numerical error is a 
useful method to achieve this goal, but it comes at the expense the order of accuracy of the scheme.  
Compact schemes are popular and widely used high order and high resolution numerical schemes. 
Application of compact schemes in computational fluid dynamics (CFD) can be traced back to 
1970s [1-4]. Lele [8] proposed a series of compact schemes for derivatives, filtering and 
interpolation and by using Fourier analysis, showed their spectral-like resolution for a certain range 
of wavenumbers. Lele also proposed equating modified wavenumber and wavenumber at certain 



wavenumbers as a method to optimize dispersion error of compact schemes. Tam and Webb [9] 
proposed the dispersion relation preserving (DRP) scheme and they used an integrated error to 
form a minimization problem to optimize the dispersion error of an explicit finite difference 
scheme with a seven point stencil. Kim and Lee [10] used DRP idea to a seven point pentadiagonal 
compact scheme with second and fourth order of accuracy and later they [11] developed a series 
of optimized boundary stencils for their optimized compact scheme. Zhuang and Chen [15] 
developed an optimized fourth order upwind DRP scheme for CAA applications. Bogey and Bailly 
[19] and Tam [18] extended the stencil size of DRP scheme from seven to nine, eleven, thirteen 
and fifteen points and the increase in the size of stencil resulted in more numerical resolution at 
higher wavenumbers. 
 
Chu and Fan [13] and Mahesh [14] independently introduced combined compact schemes. This 
new family of compact schemes compute the first and second derivatives together and has better 
numerical resolution. Lui and Lele [16] used Lele [] optimization method to develop a sixth order 
pentadiagonal compact scheme. Ashcroft and Zhang [17] optimized a five point, fourth order 
prefactored compact scheme with two independent bidiagonal matrices. Jordan [21] introduced a 
new method for optimization of compact scheme. Instead of using a Fourier analysis this new 
method uses a composite template and unlike the Fourier transform, this template analysis the 
resolution of the whole matrix, including the boundary schemes, and gives a sets of pseudo-
wavenumbers for each point. Jordan used these sets and a least square optimization to determine 
the coefficients of the new optimized scheme and later used the same method to optimize a 
pentadiagonal compact scheme [26]. 
 
Kim [20] introduced a new fourth order optimized pentadiagonal compact scheme and used a 
combination of polynomials and trigonometric series to formulate extrapolation function for 
optimization of new boundary schemes with better resolution. Later, Kim and Sandberg [27], Haeri 
and Kim [28] and Turner et al. [33] introduced new methods for optimization of boundary schemes 
for fourth order optimized pentadiagonal compact schemes and efficient parallel computation 
using domain decomposition. Liu et al. [22] used a sequential quadratic programming (SQP) to 
optimize a fourth order pentadiagonal compact scheme and its boundary schemes. Following 
Holberg [7], Venutelli [24] used minimization of the group velocity error to optimize fourth and 
sixth order staggered pentadiagonal schemes. Zhou and Zhang [25] introduced an optimized 
prefactored compact scheme for the second derivative. Yu et al. [31] developed a fifth order 
optimized version of combined compact scheme [13-14] to solve advection equation. 
 
Recently, Zhang and Yao [29] used simulated annealing algorithm [6] to optimize zeroth order 
explicit finite difference scheme with a specified error threshold for maximum norm of error. They 
showed by this new method one can optimize error more flexibly and increase the cutoff 
wavenumber. Cunha and Redonnet [30] investigated effect of reduced order of accuracy on 
performance of DRP schemes. They showed the reduction of the order of accuracy may cause error 
in larger scales and therefore is harmful when such scales are important in final analysis. To solve 
this problem they proposed the usage of optimized schemes with higher order of accuracy and 



later, they proposed a new approach for optimization of explicit finite difference schemes and two 
optimized scheme with sixth and eighth order of accuracy [32]. 
 
In this paper we intend to optimize compact pentadiagonal finite difference schemes by using 
maximum error norm and increase their order of accuracy to six and eight. In the second section 
of paper, we introduce the compact pentadiagonal finite difference scheme and analyze its 
numerical dispersion error by using Fourier analysis. Later we introduce optimization procedure 
by using maximum error norm and use this procedure to determine the coefficients of the 
optimized scheme. In the third section we use numerical experiments to assess the order of 
accuracy and numerical resolution of the optimized schemes. 

Numerical Scheme 

A compact pentadiagonal scheme with a seven point stencil is a linear combination as, 
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Tridiagonal and explicit approximation can be achieved in Eq. (1) by setting � = 0 and � = � =

0 respectively. By matching Taylor series coefficients of different truncation error terms, one can 
determine the relations between coefficients of Eq. (1) these relations are: 
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Solving Eqs. (2)-(6) gives a unique set of coefficients for a tenth-order pentadiagonal compact 
finite difference scheme. 
 

Error analysis by Fourier transformation 

Fourier analysis is an effective tool for analyzing and comparing numerical error of different finite 
difference and its application for such analysis is extensively described in [8]. Fourier analysis is 
also an effective method to quantify numerical resolution of different numerical schemes and its 
results can be used for error optimization [8, 9]. 
Fourier transformation and its inverse have the following form 
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��(�) is the Fourier transformation of �(�), � is the wavenumber and � = √−1. By taking Fourier 
transformation of Eq. (1), modified wavenumber is obtained as 
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where � = �∆� and �� = ��∆� are scaled wavenumber and scaled modified wavenumber, 

respectively. To measure the numerical error, |�� − �| and  
������

�
 can be defined as the absolute 

and relative measures of error, respectively [8, 29]. 
 

Optimization procedure  

Although compact schemes have good numerical resolution in low wavenumber range, but their 
resolution deteriorates as wavenumber increases. One can use an optimization procedure to 
increase the numerical resolution of the numerical scheme. To achieve this goal, the scaled 
modified wavenumber should a give a better approximation of scaled wavenumber at high 
wavenumbers. Tam and Webb suggested using an integrated error to form a minimization problem 
for dispersion error and solving this problem will lead to reduced dispersion error in the integration 
range. 
 
Lele [8] proposed an alternative method for optimization of dispersion error. In this method instead 

of using integrated error, ��  sets to be equal to � at certain wavenumbers, this will lead to new 
equations as 
 

2�� sin���� + 2�� sin�2��� + 2�� sin�3��� − 2��� cos���� − 2��� cos�2��� = ��. (10) 

 
By solving these new equations, one can determine some or all of coefficients in Eq. (1) and desired 
goal for optimization can be achieved by try and error. Zhang and Yao [29] used this method and 
a simulated annealing algorithm [6] to determine the coefficients of the optimized finite difference 

scheme by the error tolerance threshold, �, as the maximum norm of the dispersion error. 
 
In this paper, we used Lele’s method [8] for optimization of the numerical error. We found try and 
error is a fast and easy way to optimize the compact finite difference scheme by maximum norm 
of error and therefore we did not use any other extra algorithm for optimization, like the usage of 
simulated annealing algorithm by Zhang and Yao [29]. Optimization of numerical comes at 
expense of the order of accuracy, because equations like Eq. (10) should be used to determine some 
of coefficients in Eq. (1) instead of using Eqs. (2)-(6). Cunha and Redonnet [30] showed this 
reduction of the order of accuracy can result in considerable error in lower wavenumber range and 
therefore optimized schemes with increased order of accuracy may be needed. Table 1 to Table 3 



show coefficients of optimized fourth, sixth and eighth order scheme with different error 
thresholds, and we determined these coefficients by using Eqs. (2)-(5) and Eq. (10). 
 

Table 1 Coeffients of fourth order optimized scheme with different error treshold 

	 � = 10��	 � = 10��	 � = 10��	

�	 0.6082258801733940	 0.5799409399256260	 0.5562135732927600	
�	 0.1119841895552910	 0.0913025587073633	 0.0767799831080962	
��	 0.6226500993288040	 0.6488542583945110	 0.6691663401223610	
��	 0.2832201917744050	 0.2514903896275570	 0.2253610769453380	
��	 0.0103731956170232	 0.0064694869944544	 0.0043683541292728	

  

Table 2 Coeffients of sixth order optimized scheme with different error treshold 

	 � = 10��	 � = 10��	 � = 10��	

�	 0.5763671534480410	 0.5538290120198530	 0.5365894666122440	
�	 0.0873786847225768	 0.0746214733595378	 0.0659778177265754	
��	 0.6523994549163750	 0.6717832954024240	 0.6847527593400610	
��	 0.2476871227189510	 0.2224843288821100	 0.2043581271773250	
��	 0.0053240459387800	 0.0038995107375816	 0.0030327568813695	

  

Table 3 Coeffients of eighth order optimized scheme with different error treshold 

	 � = 10��	 � = 10��	 � = 10��	

�	 0.5367930568824080	 0.5241025757235620	 0.5157437214861430	
�	 0.0647172227529633	 0.0596410302894250	 0.0562974885944574	
��	 0.6868707168185950	 0.6942734974945880	 0.6991494957997490	
��	 0.2031640938486790	 0.1911504383516390	 0.1832373896735490	
��	 0.0027704583731389	 0.0023897439383735	 0.0021389783112510	

 

Figure 1 to Figure 3 shows the absolute error of  �� with different error thresholds for fourth, sixth 

and eighth order optimized schemes, respectively. We also plot the absolute error of  �� for the 
original tenth order compact scheme. By comparing plots in different figures, we can conclude 
each optimized scheme has better resolution than the original scheme in higher wavenumbers. 



 
Figure 1 absolute error of  �� for optimized fourth order schemes with different error 

threshold. 

 

 
Figure 2 absolute error of  �� for optimized sixth order schemes with different error 

threshold. 

 



 
Figure 3 absolute error of  �� for optimized eighth order schemes with different error 

threshold. 

 

Numerical results 

In this section we use numerical experiments to test the order of accuracy. To achieve this goal, 
we numerically solve a wave equation as 
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The boundary conditions of this equation are periodic, and its initial condition is 
 

�(� = 0) = sin(2��), (12) 
 
which leads to an exact solution as 
 

�(�) = sin(2�(� − �)). (13) 
 
We use a forth order ten stage strong stability preserving (SSP) Runge-Kutta method [23] for time 
integration. The CFL number of fourth, sixth and eighth order schemes are 0.4, 0.05 and 0.01, 
respectively. The reason behind CFL number reduction for sixth and eighth order schemes is to 
reduce the effect time discretization error. 
 



. 

 
Figure 4 Convergence of L1 norm of error for fourth order optimized schemes with 

different error thresholds. 

 



 
Figure 5 Convergence of L1 norm of error for sixth order optimized schemes with different 

error thresholds. 

 



 
Figure 6 Convergence of L1 norm of error for eighth order optimized schemes with 

different error thresholds. 

 
Figure 4 to Figure 6 show results of convergence test by solving Eq. (11) for optimized fourth, 
sixth and eighth order schemes by different error threshold. By considering these plots, we can say 
all of optimized schemes achieved their nominal order of accuracy and in group of optimized 
schemes with same order of accuracy, schemes with smaller error threshold have lower error. 
 

Conclusion 

In this paper we optimized compact pentadiagonal finite difference schemes by using maximum 
error norm and different error thresholds. The optimized schemes have fourth, sixth and eighth 
order of accuracy. We used numerical experiments to investigate the order of accuracy and 
numerical resolution of optimized schemes. Based upon results of these experiments we can say 



all schemes achieved their designed order of accuracy and schemes with smaller error threshold 
have better numerical resolution and lower error in convergence tests. 
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