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Abstract  
In this paper, the displacement response of functionally graded material structure under 
mechanical loading was studied by using strip element method. Established a parameterized 
model for describing the functional gradient material physical properties, the displacement 
expression of strip element method was deduced, using the virtual work principle to get the 
control equations of functionally graded materials plane problem, using the modal 
superposition method to complete the solution of the equation. The accuracy of the calculation 
method was verified by comparison with the result of finite element method. The research 
shows that the results of the strip element method are consistent with the finite element 
method in the displacement response of the functionally graded materials under mechanical 
loading. With the increase of the gradient coefficient, the ceramic content is increased, and the 
material stiffness is also increased, then the structure response caused by external loading is 
decreased. With the increase of the gradient coefficient, the influence of the gradient 
coefficient to the structure displacement response is decreased gradually. 
Keyword: Displacement Response; Functionally Graded Materials; Strip Element Method. 

1 Introduction 

Functional gradient material is a kind of polyphase material, which continuously controls the 
distribution of components in the preparation of materials so as to meet different requirements 
of different parts of the structure [1][2]. At the same time due to material and components of 
continuous changes in the structure, there is no macro interface, avoid the traditional 
composite interface place due to the performance of the mutation and the damage was caused 
by the occurrence of failure [3]. Functional gradient materials can be designed to change the 
distribution of material components and bring the development of composite materials to a 
new level. 
In recent years, experts and scholars had conducted in-depth study on the mechanical 
problems of functionally graded materials. The free vibration of functional gradient materials 
under mechanical loading and temperature loading was analyzed using Peano-Baker series 
method by Liu Wuxiang[4]. The dynamic characteristic analytical solution of the quadrilateral 
and rhombic function gradient plate was obtained by using the beam function group [5]. 
Reddy [6] adopted the first-order shear deformation theory to study the structural response of 
the functional gradient plate structure under the thermo-machine coupling. Using the 
first-order shear deformation theory, Thai [7] had studied the problem of bending and free 



 

 

vibration of functionally graded materials. Liew [8] studied the vibration response of 
functionally graded material plates under the coupling of mechanical load and electromagnetic 
load based on the first-order shear deformation theory using the finite element method. 
Zenkour [9] used first-order shear deformation theory and classical elastic theory to study the 
structural bending deformation of the sandwich structure under mechanical loading. Ferreira 
[10] used three-order shear deformation theory and meshless method to study the structure 
response of functional gradient materials under static load. Reddy [11] studied the 
deformation of functional gradient rectangular plate based on the three-order shear 
deformation theory. Brischetto [12] studied the analytic solution of the structural displacement 
response of functionally graded material plates under transverse loading. Ray [13] used the 
finite element method to study the structural response of the functional gradient fiber 
piezoelectric materials in exponential distribution. Kulikov [14] adopted surface sampling 
method to solve the problem of three-dimensional thermal stress of functional gradient 
materials. 
Due to physical performance parameters of functionally gradient materials with the coordinate 
changing continuously, the constant coefficient differential equation turns into the variable 
coefficient differential equation while the theory of elastic body deformation is derived, it is 
difficult to solving such problem by analytical method. The numerical method is used to solve 
complex problem while the large computation is in process. In recent years, the researchers 
have proposed a semi-numerical and semi-analytic method, that is called the strip element 
method [15]. It uses the merit of analytical method and numerical method for widely used. 

2 Strip element method theory 

The strip element method is a series of strip element separated by the solution domain as 
shown in fig.1. The displacement function is the continuous function of x , and the 
displacement of the element is obtained through the line displacement interpolation. 

H

L x

y

h

 
Fig.1  strip element method for solving model 

It is assumed that the displacement functions of functionally graded materials under external 
loads are 

( ) ( ) exp( )U N y V x i tω= −                           (1) 
where ( )N y represents shape function for displacement interpolation; ( )V x  represents 
displacement function; ω  represents circle frequency; t represents time. 



 

 

The expression of ( )N y  is 
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where h represents element thickness; I represent 2 order element matrix. 
According to Kausel 's equation, the equilibrium equation of the system is 

0TU Lρ σ− =                               (3) 

where U represents displacement vector; L represent differential operator matrix; σ  

represents stress vector and [     ]T
x y xyσ σ σ τ= ; superscript T denotes transpose. 

Where the expression for L  is  
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The displacement function is introduced into (3), given 
TW U Lρ σ= −                                (5) 

Since the internal displacement function of the element is interpolated by the nodal 
displacement, the residual value must be exist in the element, then 0W ≠  
By the principle of virtual work, there is  

0
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T T TV x F V x S U Wdyd d d= ∫                      (6) 

Where F represents external mechanical load; S represent nodal stress vector. 
Given an external load as 

exp( )F F i tω= −                             (7) 

where F  represents external load amplitude. 

The element stress is  
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where stress Rx is  
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The displacement expression is substituted into the virtual work equation and we obtain 
2

2
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where 0A ， 1A  and 2A  represent coefficient matrix. M represents mass matrix. 

It can be seen from the equation (10) that the governing equation obtained by element 
discretization is the ordinary differential equation of x, which reduces the difficulty of the 
solution, it also reflects the idea of y direction discretization. 
The coefficient matrix is  
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The expression for the mass matrix is 

0
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h

TM N y N y dyρ∫=                            (14) 

Assemble all the elements in the domain of the problem, and the differential equation is 
obtained in the whole domain. 
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where A0t, A1t and A2t are the coefficients matrix for the element assembly in the solving 

domain; Mt is the mass assembly matrix; tF  is the external mechanical load; Vt (x) is the 

displacement function in the solving domain. 



 

 

Assumed the displacement function form is 

( ) exp( )t tV x d ikx=                            (16) 

Assumed external mechanical load form is  

exp( )t tF P ikx=                             (17) 

The equation (16), (17) substitution into equation (15), we obtain 
2 2

2 1 0[ ]t t t t t tP k A ikA A M dω= + + −                     (18) 

tP  represents the load acting on the nodal line, while 0tP =  the equation (18) is transformed 

into a homogeneous equation, and the eigenvalue equation for the k is obtained.  
2 2
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Equation (19) can be written 
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The 2M (M=6N-2(N-1)=4N-2) eigenvalue is obtained by solving the equation (20), and the 

eigenvectors corresponding to the jth eigenvalues are represented as jφ  

1, 2, M,  j j j jφ φ φ φ =                              (21) 

By means of the modal superposition method, the solution of the equation can be expressed as 
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exp( )j jX ik x=                             (24) 
Equation (22) is a fundamental solution of the equation. There are 2M constants C  in this 
fundamental solution, so it is necessary to determine the unknown coefficients by the 
boundary conditions. 
Since equation (22) is the fundamental solution in the problem domain, the displacement at 
any point satisfies the equation (22), and the displacement is satisfied at the right boundary of 
the solution. 
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That can be written 

( )R R
btG x C V=                           (26) 

The same way, on the left side 

( )L L
btG x C V=                           (27) 

The equation (26) and (27) are assembled and sorted, and the constant C  expression can be 
obtained 
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Where Vbt is the displacement at the boundary 
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By equation (23), ( )RG x  can be expressed as 
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exp( )R R
j jX ik x=                          (31) 

The superscript R represents the right boundary. 
Similarly, the left boundary condition has the same form as the displacement matrix at the 
right boundary. The difference between the two forms is that the x coordinate value at the 
right boundary is changed to the x coordinate value at the left boundary. 

exp( )L L
j jX ik x=                           (32) 

3 Application of the boundary conditions 
The stress vector of the internal element can be expressed as 
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The displacement function is substituted 
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Where R1 and R2 are element coefficient matrices 
R1 is  
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Calculate the R1 and R2 for all elements, and obtain the overall stress vector Rt as follows 
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where :R1t、R2t is the assemble matrix of the element coefficient matrix. 

The displacement is simplified by using the left and right boundaries 
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The stress vector of the inner nodal line is equal to the average value of the stress vector of the 
adjacent left and right elements. We obtains 

 bt btR KV=                             (39) 

In the equation,   R L
bt bt btR R R =    is an external load acting on the left and right boundaries, 

where the stiffness matrix K is 
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In equation (40), RG ′  and LG ′  have the same expressions as 
RG  and 

LG . The difference 

is that 
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LG  in R
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exp( )L L
j j jX ik ik x′ =  respectively. 

Equation (39) reflects the relationship between the stress boundary condition and 
displacement, the stress and displacement boundary conditions are transformed into 
displacement boundary conditions by equation (39), a constant c can be obtained by 
substituting the boundary displacement into equation (28), from equation (22) and (1) the 
displacement can be obtained in the solving problem. 
4 Establishment of gradient parameter model 
The functional gradient materials studied in this paper are composited by metal and ceramic 
materials. The metal material is 1Cr18Ni11Nb and the ceramic material is Si3N4. The physical 
properties of the two materials are shown in table 1. 
 

Tab.1 physical properties of 1Cr18Ni11Nb and Si3N4 materials 

material 
Modulus of 

elasticity / MPa  
Poisson'

s ratio 
1Cr18Ni11Nb 2.38×105 0.3177 

Si3N4 3.22×105 0.2400 
 
Because functionally graded materials are continuously changed by different materials 
according to the design requirements, the physical performance parameters of the materials 
are expressed as a function of the volume fraction of the material, the physical properties of 
the materials and the content of components, it denotes as 

C M C M

C M C M

C M C M

( ) ( )
( ) ( )
( ) ( )

E y E E Q E
y v Q
y Q

ν ν ν
ρ ρ ρ ρ

= − +
= − +
= − +

                       (41) 

where E(y), ( )yν  and ( )yρ  are the elastic modulus, Poisson's ratio and density of FGM 

plates, respectively, CE , Cν  and Cρ are the elastic modulus, Poisson's ratio and density of 

ceramic materials, respectively. ME , Mν , Mρ  are the elastic modulus, Poisson's ratio and 

density of metal materials, respectively. QC is the volume fraction of the ceramic. 
To ensure the continuity of the material, the sum of the metal volume fraction and the ceramic 
volume fraction at any location of the material is 1. 

C M 1Q Q+ =                               (42) 

where, QM is the volume fraction of metals. 
The volume fraction change function of the functionally graded metal is 



 

 

M (1 (1 ) (1 ) )c py yQ a b
H H

= − − + −                   (43) 

where y is the vertical position and 0≤y≤H; H is FGM plate thickness; 0p ≥ is the gradient 
parameters. 
By equation (43), it can be seen that when p=0, QM=1, and QC=0. Substituting that into (41) 

we have E(y) =EM, M( )yν ν= , M( )yρ ρ=  and functionally graded material degenerates into 

pure metal homogeneous material, When p tends to infinity, the QC tends to 1, and the 

equation (41) can be obtained E (y) =EC, C( )yν ν= , C( )yρ ρ= , and the material is reduced to a 

pure ceramic homogeneous material. 
When a=1 and b=0 are functionally graded materials, the volume fraction of metals varies as 
shown in Figure 2 
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Fig. 2 law of change of volume fraction of metal with thickness under different gradient 

parameters at a=1 and b=0 
The figure 2 can be shown, when y = 0, metal volume fraction is 0, this position is pure 
ceramic material, when y = H, metal volume fraction is equal to 1, this position is the pure 
metal homogeneous material. So when a = 1, b = 0, the transition form of materials is a 
continuous transition of ceramic to metal. When the gradient parameter p = 1, the change of 
the volume fraction of the functionally graded material is continuous linear change. When the 
gradient parameter is lesser than 1, the change of the metal volume fraction decreases. When 
the gradient parameter is greater than 1, the metal volume fraction of the functional gradient 
material is slower in the early, then the volume fraction is accelerated with the thickness 
increased. 

 
5 computational model 
5.1 Validation of strip element method 
The model of figure 3 is solved by using the strip element method. In figure 3, L = 100mm, H 



 

 

= 100mm, the lower boundary is fixed, q = 100N/mm uniform load is applied on the upper 
boundary. The solution domain is divided into 20 elements and the material properties in each 
element are metal material. The metallic material property is shown in table 1. The 
displacement at y = 10mm, y = 50mm, and y = 90mm is shown in figure 4 by strip element 
method and finite element method. 
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Fig. 3 physical model of plane problem 

From fig.4 we can see that the displacement obtained by strip element method and finite 
element method in y-direction at different position is almost the same. From y = 10mm, y = 
50mm, to y = 90mm, the displacement in y-direction is increased. The accuracy of the strip 
element method is verified. 
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Fig. 4 the displacement in y-direction in different position by FEM and SEM 
5.2 The influence of element number for the results 
In the calculation process, because of the discrete of the solving domain, the size of the 
element has an influence on the accuracy of the displacement solution. Figure 5 and figure 6 
are the x-direction displacement and the y-direction displacement at y=10mm using 10 
elements, 20 elements and 50 elements, respectively. It can be known that displacement 
results have small difference when the element number is 10 and 20, while when the element 
number is 20 and 50, the result difference is not obvious, so in this calculation the element 
number is set to 20 for ensuring that precision and calculation speed.  
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Fig. 5 calculation results of x direction displacement at y=10mm 
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Fig. 6 calculation results of y direction displacement at y=10mm 

 
5.3 Structural response analysis of functionally graded materials 
The displacements with different gradient parameters are shown in figure 7 at y = 10 mm in 
the x direction. It can be seen from figure 7, with the increase of gradient coefficient, the 



 

 

displacement response decreases, and this is due to metal volume fraction decreases in the 
functionally graded materials, ceramic volume fraction increases, causing the structure 
stiffness increased. In addition, the displacement in the x direction at y = 10mm has nonlinear 
characteristics. 

 

0 10 20 30 40 50 60 70 80 90 100
-0.0035
-0.0030

-0.0025
-0.0020
-0.0015

-0.0010
-0.0005
0.0000

0.0005
0.0010

0.0015
0.0020
0.0025

0.0030
0.0035

 

 

x  
di

re
ct

io
n 

di
sp

la
ce

m
en

t/m
m

x coordinate

 p=0.05
 p=0.1
 p=1
 p=10
 p=20

 
Fig. 7 x direction displacement of different gradient parameters at y=10mm 

The displacements with different gradient parameters are shown in figure 8 at y = 10 mm in 
the x direction. It can be seen from figure 8, the displacement in y direction at y = 10mm with 
the increase of x coordinate, has the characteristics of first increases, then decreases, then 
increases. As the gradient parameter increases, the displacement of the same position 
decreases. As the gradient coefficient increases, the influence of the gradient coefficient for 
the displacement response decreases gradually. 
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Fig. 8 y directional displacement of different gradient parameters at y=10mm 

 



 

 

x direction of displacement as shown in figure 9 and 10 at y = 50 mm and y = 90mm. They has 
the same law at y = 50 mm and y = 90mm. The displacement absolute value of x direction 
with respect to x = 50mm is symmetrical, and with the increase of gradient coefficient, x 
direction displacement is reduced, this is due to the increase of the gradient coefficient, the 
ceramics content of the material keeps increasing causing to the structure stiffness increased. 
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Fig. 9 x directional displacement of different gradient parameters at y=50mm 
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Figure 10 x direction displacement for different gradient parameters at y=90mm 

 
y direction of displacement as shown in figure 11 and 12 at y = 50 mm and y = 90mm. It can 
be seen that the displacement in y direction has class parabolic distribution, and as the change 



 

 

of spatial coordinates, the change curve approximation to straight line. With the increase of 
gradient coefficient, structural stiffness is gradually increased, the displacement response 
under external loading is reduced. 
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Fig. 11 y direction displacement of different gradient parameters at y=50mm 
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Figure 12 x direction displacement for different gradient parameters at y=90mm 
 

6 Conclusion  
The parameters model of the functional gradient materials is presented in this paper. The 
displacement response of considering different parameterized model is investigated in 



 

 

mechanics loading using the strip element method, some useful results have been obtained.  
1) The displacement response result is almost the same by using two methods, so to verify 

the validation of the strip element method. 
2) With the ceramic volume fraction increases, the metal volume fraction decreases in the 

functionally graded materials, the structure stiffness is increasing, displacement response 
decreases. 

3) As the gradient coefficient increases, the influence of the gradient coefficient on the 
structure displacement response decreases gradually. 
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