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Abstract 
Analysis tools available for massive concrete technology are still limited to deterministic 
models, which can’t be used for the various uncertainty quantification of the structural 
performance. In this paper the spectral stochastic finite element (SSFEM) analysis theory of 
the mass concrete structures is developed. First the random field is discretized with the K-L 
expansion and the Galerkin approach; together with the polynomial chaos expansion (PCE) 
for output stochastic field, the SSFEM framework is then formulated for mechanic problems. 
Special items such as the reliability concerning displacement are also addressed. Practical 
gravity dam problem is provided as an illustration and verification. 
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1. Random field discretization with K-L expansion 
A scalar random material property (H(x, θ), x ∈Ω, θ ∈S) with mean value μ(x) and 
autocovariance function C(x1, x2) can be approximated with the following series, 
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2 Stochastic field expansion with polynomial chaos 
The response U(θ) can be represented as a series of polynomials in the standard normal 
variables {ξi(θ), i=1…M}. With the orthogonal PCE (polynomial chaos expansion), it can be 
written as, 
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3. Structural reliability analysis based on SSFEM 
In this section the calculation of structural reliability Pr is addressed. Taking the following 
structural function as an example,  

Z= -t rU U
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where Ut , Ur are the tolerance value and simulated value for the displacement of a designed 
spatial location, respectively. Substituting Eq.(2) into Eq.(3) results in, 
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4. Application  

  

Fig. 1. Selected eigenvectors φl’(x) for the corresponding Gaussian random field for 2D dam 

(l=1, 2, 3). 

   
Fig. 2. Simulated mean value and standard deviation of displacements in x & y direction.(mm) 
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